
SANDIA REPORT 
SAND87-1912 l UC-32 

Unlimited Release 

Printed March 1989 

c. .c 

PRONTO 3D 
C A Three-Dimensional Transient 

Solid Dynamics Program 

L. M. Taylor, D. P. Flanagan 

Prepared by 
Sandia National Laborakories 

Albuquerque. New Mexico 87 185 and Livermore, California 94550 
for the Uniled Slates Deparlmenl of Energy 
under Conlracl DE-AC04-76DP00789 





Dist rihut ion 
I.‘(‘-32 

PRONTO 3D A Three-Dimensional Transient 

Solid Dynamics Program 

..- 



, - 
I 

4 

c B 

........ . ........... 

ION 
................... 

L’ (:o\~ERNl~;G EQUATIONS ................ 

2. I IiineInat its ....... , . , .......... 

2.1 .l Stress antI Strain Rates ............. 

2.1.’ F11nda1l1cntal Equations ............. 

3 Sl~hlERIC‘Al, I~ORh~lI~I,ATlO~ .............. 

3. I 1~~igl~l-Sotlc I’rliiorlll St raili El~Illcnt ........... 

:I. I. I I,IIIII~)c(I .\lass Matrix .............. 

3.2 Ilsplicit ‘I’inlc Inlcgration .. , ............ 

3.13 k‘irlitc I~ol;~tio~~ :\Igorithm ............... 

3.~1 I~~~lcrrllilli~liOI~ of Lfl‘cctivc I\lodUli ...... . ..... 

3.:) 1)~~1~~llli1lilli~~l1 of tllc St;ll)lc Time lncrcmcnt ......... 

3.(i _ IlOll~~li~SS (‘ontrc,l .4lgorit 11111 .............. 

3.7 ArtifiCiill nlllk Viscosity ................. 

3.8 Adaptive Element Deletion .............. 

4 (‘Oh-STI’l~I~TI\;E h10DELS ....... , ........ 

~1. I Elastic fiI;,t trial: llookc’s l,a\v ............. 

4.2 Elastic-Plastic iIlateria1 with (‘ombined Hardening ....... 

....... 4.2.1 Basic Definitions and Assumptions . . 

4.2.2 Isotropic Hardening . . . . . . . 

4.3.3 K;inemat ic Hardening . . . . . . . 

4.2.4 (‘ombined Isotropic and Iiinetiatic Harden 

4.2.5 fiumerical Implementation . . . . . 

* .... , . 

..... , . 

.lng . . . . . . 

. . . * . . . 

5 

9 

10 

11 

13 

13 

10 

17 

19 

19 

2 5 

3 - -J 

2i 

38 

30 

33 

3-l 

36 

38 

39 

40 

40 

42 

45 

4i > 
s 

49 - ‘; 

: 



. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

, . . . 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

. . . s 

. . . . 

. . . . 

. . . . 

. . . 

C.2.3 Surface Tracking ........... 

6.2.4 IIctc~rlllination of (‘ontact ........ 

6.2.5 (:ont.act. Forces ............ 

6.2.6 Friction .............. 

6 

. . . 

. . . 

. . . 

. . . 

. . . 

. . 

. . 

. . 

. . . 

. . . 

. . . 

. . . 

..,. . 

. . . 

. . . 

. . . 

. . 

. . . 

. . . 

. . . 

. . * 

. . . 

. . I 

53 

5-i 

61 

68 

i0 

70 

‘73 

73 

75 

76 

76 

ii 

78 

80 

80 

80 

81 

82 

83 

83 

84 

89 

92 

93 



( 

c ? 

i BOV’?lDAR\r’ C:ONDITIONS ................ 

i.1 Kinematic Boundary C:onditions ............. 

‘i.l.1 No Displacement. constraint ............ 

i .I .2 Prescril,ctf Velocity C:onstraint ........... 

7.1.3 Prescribed Acceleration constraint ......... 

7.2 Traction Uountlary Conditions ............. 

i.2.1 I’rcssurc .................. 

7.2.2 Aloving Pressures ............... 

7.3.2 iXoda1 Forces ................. 

i .:!I tionrcflecting I~oundarics ............... 

x 1?l;1’1‘1.:\1,1%,47’10S ASI> TIAlE-S’I‘Ei)!‘INC: AI,C:OR1T1I~I ..... 

8.1 Illitializ;~tiorl ................... 

(3.2 ‘l’illlc Stvp Loop .................. 

!I !xI;R1EI~l(:Al, 1::xAnrl~l,l:s ............... 

!I. I Splicrc 1111I);1(.1 .................. 

c) 3 ................... . .- (:ask 1111p;1c1 

.4 PRONTO 31) liSI3RS lXSTRU(!TIONS ............ 

11 STORA(:I: :2l,I,O(‘:~‘I‘ION FOR I’RONTO 31) ......... 

I\. 1 I>inlcnsioI~ing l’aralnctcrs and Variables .......... 

B.2 Fotlal l’oini Arrays ................. 

B.3 I:lelllent Arrays .................. 

B.4 Ol)tjo* al Elc~~le~~t, Arrays ............. 

B.5 Material Ulock Arrays ................. 

Il.6 Contact Options ................. , 

13.6.1 C:ont.act Surface Arrays ............. 

B.6.2 Rigid Surface Arrays .............. 

7 / 

96 

96 

96 

96 

97 

97 

97 

100 

101 

101 

103 

103 

104 

106 

106 

111 

117 

131 

131 

132 

132 

133 

133 

135 

135’ 

135 



B.7 Kinematic Constraint Options ............ , 136 

B.7.1 No Displacement Array ........ , .... 136 

B.7.2 Prescribed Velocity Arrays ....... , .... 136 

B.7.3 Prescribed Acceleration Arrays ........... 137 

B.8 Load Options ................... 137 

B.8.1 Frescribed Nodal Force Arrays ... , ....... 13’7 

B.8.2 Prescribed Pressure Arrays ............ 138 

B.8.3 Moving Pressure Arrays ..... , ....... 138 

13.9 initial Velocity Options ................ 139 

I3.9.1 liii!.iCl! NOc!r Se!. ?‘e!oci?~; Arrays .......... 139 

B.9.3 Initial hlaterial Block \‘elocit,y Arra!Ts ........ 139 

B.9.3 Initial Angular Velocity Arrays. ........... 139 

B. 10 Miscellaneous Opt ions ................ 139 

B.lO.l User Function Arrays .... , ..... , ... 139 

13.10.2 Detonation Point Arrays ............. 140 

B.10.3 i\lTonreflcc?ing Boundary Array ........... 140 

I3.10.4 Adapt.ive Elcnlent. Deletion Arrays ......... 140 

Il.1 1 Vect.cr Block Arrays ................. 141 

ii.12 Boundary Oondit~ion Sets ............... 141 

B.12.1 Node Set, Arrays .. , ............. 141 

B.12.2 Side Set Arrays ..... , .... , , .... 141 

B.13 EXODUS Data Base .... , ............ 142 

B.13.1 Nodal Variable Output Arrays ........... IF.2 

B.13.2 Element Out.put. Arrays ............. 143 

B.13.3 State Variable Output Arrays ........... 143 

c: ADDING A NEW CONSTITUTIVE MODEL TO PRONTO .... : 145 

References . . . . . . . . . . . . . . . . , . . . . . , 147 

c- . ..d 

/’ “^ 



c. 

c ‘j .’ 

C 
1 

,.: 

Figures 

2.1 Original, Deformed and 1ntermediat.e Configurations of a Body . , 

3.1 Mode Shapes for the Eight,-Node Constant Strain Hexahedral Element. 

4.1 Yield Surface in Deviatoric Stress Space . . . . . . . . . . 

4.2 Conversion of Data From a Uniaxial Tension Test t.o Equivalent. Plast.ic 

St.rain Versus vonhilises Stress . . . . . . . . . . . . . 

4.3 Geometric Interpretation of the Consistency Condit.ion for Kinematic 

Hardening . . . . . . . . . . . . . . . . . . . , 

4.4 Effect. of the Choice of the Hardening Paramet.er, ,B, on t.he Comput.ed 

Uniaxial Response . . . . . . . . . . . . . . . . . 

4.5 Ceornct ric Int.erpret.ation of t.he Incremtnt.al Form of the Consist.ency 

C:ondit ion for Conibincd Hardening . . . . . . . . . . . . 

4.6 Geometric Interpret.ation of the Radial Rct.urn Correction . . . . 

4.7 Yield St.ress as a Funct.ion of St.ra.in Ilate as Defined l>y the Viscoplastic 

Material hIoclel . . . . . . . . . . . . . . . . , , 

4.8 Pressure Dcpcndcnt Y’ield Surface for the Soils and Crushable Foams 

Mat criill hl0ClCl . . . . . . . . . . . . . , , . . , 

4.9 k’ornls of Valid Y’ield Surface Which can be Defined for the Soiis and 

C!rushable Foams AIat.eriil.1 Model . . . . . . . . . . . . 

4.10 Pressure Versus Volumetric Strain Curve in Term? of a User Defined 

Curve: f(cv), f or t,he Soils and Crushable Foams riatcrial Model , , 

4.11 Possible Loading Cases for t.he Pressure Versus ‘Jolumet.ric Strain Re- 

sponse lising t,he Soils and Crushable Foams Material Modei . . . 

6.1 Surficial Versus Spat.ial Distance . . . . . . . . . . . . . 

6.2 Inside Corner . . . . . . . . . . . . . . . . . . . 

6.3 Outside Corner . . . . . . . . . . . . . . . . . . 

6.4 Cont.act Determinat,ion Logic . . . . . . . . . . . . . . 

9 

14 

21 

41 

44 

46 

48 

51 

52 

56 

62 

64 

65 

66 

85 

90 

90 

91 



7.1 Definition of a Pressure Boundary Condition Along an Element Face 

0.1 Sphere Impact Problem Mesh .............. 

9.2 Time Sequence from the Sphere Impact Problem , ...... 

9.3 Impact c:rat.er Formation during the Sphere Impact Problem ... 

9.4 PRONTO 3D Input Commands for the Sphere Impact Problem . . 

9.5 Cask Impact Problem Definit.ion ............. 

9.6 Kinct.ic Energy during the Cask Impact. Problem ....... 

9.7 Deformed Shape at 4.61nsec of Cask Impact Problem ...... 

9.8 Equivalent. Plast.ic St.rain Developed in the Cask Impact Problem . . 

9.9 PRONTO 3D Input. Con~rnantls for the Cask Impact Problem ... 

Tables 

1 .I I~I’UT/OUTI’U?‘ Units ............... 

3.1 Orthogonal Set. of Base \‘eclors ............. 

3.2 Nodal I’crmut.ations . , ............... 

3.3 Tlircc Possible Orientations of Node Kumbcring ....... 

3.4 Nonzcro Terms Cenerat.ed by Applying Asymmet.ry ...... 

3.5 Coort1inat.c .4xcs Pcrmut.ations , ............ 

3.G Finit.c Rotation Algorithm ............... 

3.7 Special Cases for Effect.ive I\Ioduli ............ 

il.1 Sign convention used for pressure in each material model .... 

4.3 Algorit.l;m for Viscoplastic Material hlodel ......... 

9.1 Sphere Impact Problem Mat.crial Properties ......... 

9.2 Cask Impact Problem Material Properties ......... 

A.1 Internal St at.e Variables Available for Each Material hllodel .... 

10 

98 ,f 
‘\. _ 

107 

108 

109 

110 

112 

113 

114 

115 

116 

12 ,, ‘- 

‘0 

25 

25 

26 

26 

29 

30 

39 

5i 
c 
*_ 

106 

131 

120 



1. INTRODUCTION 

PRONTO 3D is a finit,, element program for t.he analysis of t.he three-dimensional 

response of solid bodies subjected to transient dynamic loading. The program includes 

nonlinear constitutive models, and accurat,ely analyzes large deformations which may 

lead to geometric nonlincarities. PRONT,O is a powerful tool for analyzing a wide 

vitricty of problcn~s, including classes of problems in impact dynamics, rock blasting, 

and accitlcilt analyses. 

PROX’I’O 3D is a direct descendant of the PRONTO 2D [l] code and readers will 

recognize the similarity berifveen this report and Reference 111. \j’e have tried whenever 

possible 1.0 keep the theory and algorithms the same in both codes. The only notable 

exception to this is that the contact. algorit,hm for the three-dimensional code is by 

ncccssit.y qnitc tliiferent.. 

\\‘c developed a flexible, prol)ieIn-orieIlted language for t.he input to PRONTO 

which allo\vs tlrc user IO define a complex mechanics problem with a few concise com- 

mands. The user instructions are siinilar in PRONTO 2D and PRONTO 3D. Experi- 

ence has shown that after a user has gained some experience wit.h the code: rcfcrence 

to the user’s instructions (Appendix A) is seldom nccdcd. There are no references 

to node or element numbers in t.he problem definition. All boundary conditions are 

specified through the concept of node and element. side set.s \vhich are defined using 

the (:ENESIS 133 mesh definition data base. The GENESIS data. base is a subset. 

of 1.11~ E,XODl~S /3] finite element data base. PRONTO ccntains no mesh genera- 

t ion or post-processing capabilities; it relies on external mesh generat,ors and ext.ernal 

post -processors. All pf-‘st-processing of the finit.c element results is accomplished b\ 

accessing the E,XODUS data base t.hat PRONTO writ.es during the analysis. 

The clcvelopmcnt of PRONTO was motivated by the need for a c.ode which could 

serve as a.test.bed for research into numerical algorithms and new const.itut.ive models 

for nonliriear mat.erials. Towards t.his goal, the code cont.ains a well-document,ed and 

easy-t.o-Iuse int.erface for implement.ing new const.it.utive models (Appendix C). C:om- 

pletc documentation of t.he code architecture and computer st.orage requirements is 

provided in Appendix B. 

PRONTO is writt.en in complet.ely standard FORTRAN !4]. Any syst,em depen- 

dent coding (such as the determinat.ion of the date or the memory management.) is 

part. of t,he SUPES [5] package. Th e only input./out.put. unit.s used by PRONTO are 5, 

6, 9, 11, 30 and 32. Their use is described in Table 1.1. 



Table 1 .l. IIXPUT/OUTPUT Units 

.-j 

. . ,L 

12 



2. GOVERNING EQUATIONS 

In this chapter: we present the underlying continuum mechanics concepts which 

are necessary to follow the development. of t.he numerical algorithms in the following 

chapkrs. Bold face charact.crs denok tensors. The order oi the tensor is implied by 

t!le cont.ext of the equation. 

2.1 Kinematics 

A mataerial poirkt. in t.ile reference configuration Bo with position vect.or X occupies 

position x at t.ime t in t.he deformed configuration B. Hence we write x = x(X., t). 

The rnot.ion from the original configuration to the deformed configuration shown in 

Figure 2.1 has a deformation gradient. F given by 

F = ?? 
ax ’ 

IFI > 0 . (2.1) 

Applying the polar decomposition theorem to F: 

F=VR=RU (2.2) 

where V and U are 1 he syrnmet ric*, positive definite left and right. stretch tensors, 

respecti\:ely, and R is a proper ort.hogonal rotation tensor. Figure 2.1 illustrat.es the 

intermediate oricnt.ations defined by t.h,- two alternate decompositions of F defined by 

Equation 2.2. The det.ermination of R as defined by Equation 2.2 presents a significant 

numerical challenge. In Section 3.3: we describe the incremental algebraic algorithm 

thai we use to det.errnine R. 

The vclority of the material point. X is writt.en as v = jc where the superposed dot 

indicates tirrle differentiation holding t,he mat.erial point. fixed. The velocity gra.dient is 

denoted by L ;tncl may be expressed as 

dV av ax * -1 
-- = L = j, = dX ax FF . (2.3) 

The velocity gradient can be written in terms of its symmetric (D) and antisymmetric 

(W) parts, 

L=D+W. 

tion from Equation 2.2 in Equation 2.3 gives t decomposi 

(2.4) 

L = EiRT + RiJU-lR* . (2.5) 

13 



Figure 2.1. Original, Deformed and Intermediate Configurations of a Body 
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Dienes [C;] dc~:oted t,he. first t,erm on the right-hand side of Equation 2.5 by R : 

R=RR? (2.6) 

Both W and n are antisymmetric and represent a rat,e of rotation (or angular velocity) 

about SOIIlC axes. In general, CI + W. The d ff i erence arises when the last t*erm 

of I3quat ion 2.5 is not symmetric. The symmetric part of UU-’ is the unrotated 

dcformatinn rate t.ensor cl as defined below (note that both U and U-’ are symmetric). 

cl = $JU-’ + U-‘U) = R%R (2.7) 

There arc t.wo possible cases which can cause rotation of a material line c!zment: 

rigid body rot ation and shear. Since total shear vanishes along the axes of principal 

stretch, t.!le rotation of t,hese axes defines the t.otai rigid body rotation of a material 

point. 

It is a simple exercise in vector analysis to show t,hat. Equation 2.6 represents the 

rate of rigid body rotation at a mat.erial point (as shown by Dienes (61). It is equally 

sirtlj)lc lo sho\v that W represents the rate of rot.ation of the principal axes of the ra1.e 

of tl~~forrnatiorr D. Since D and W have no sense of t.he history of deformation, t,hey 

are ilot sufficient to dcfinc the rnt.c of rotation in a finite dcformal.ion context. 

J,irlc clcrlrcnt s where t.hc rate of shear vanishes rotate solely due t.o rigid body 

rolilt iOIlS. ‘I‘licsc lint clcIrIcrlts arc iIlOItg the principal axes of U. \Ye wil! apply a 

silllilar Ol)S~‘rVi~tiOIl below as wc derive Dienes’ [G] cxprcssiorr for calculating St. 

lising the left. decomposition of Equation 2.2 in Equat.ion 2.3 gives 

L = Vv-’ + vnv-r . (2.8) 

Post tnult.iplying by V yields an expression which defines t.he tiecomposition of L int.o 

V and R: 

Lw=+tvn. (2.9) 

\I’hcn the dual vcc.t.or of the above expression is t.akcn, t.he symmetric V vanishes t.o 

yield a set. of three linear equations for t.he t.hree independent components of R. 

The antisymmetric part of a tensor may be expressed in t.erms of its dual vector 

and t.he pcrnlut.at.ion tensor eijke Define the following dual vectors: 

W; = CijkRjk (2.10) 

20; = eijkwjk s (2.11) 

15 



w = w - 2(V - 1trvyz (2.12) 

where 

f; . = e;jk\$,D,,,k . (2.13) 

FVe observe from the above expressions that R = W if and only if the product VD 

is symmetric. This condition requires that the principal axes of the deformat.ion rat.e 

D coincide with the principal axes of the current stret.ch V. Clearly, a pure rotation 

is a special case of this condition since D, and copsequently Equation 2.13, vanish. 

Using Equat.ions 2.4, 2.10, and 2.11 in Equation 2.9 results in the expression that 
Dienes [6] gave for determining $I from W and V; 

2.1.1 Stress and Strain Rates 

Our constit.ut)ive model architect.ure is posed in t.erms of the conventional Cauchy 

st.ress, but we adopt the approach of Johnson and Bammann !7] and define a Cauchy 

stress in t,he unrot ated configuration. The reader seeking more detail t ban is present.ed 

here should see Flanagan and Taylor (81. Tl le “true” stress in the deformed configura- 

t,iort is denoted by T. The Cauchy stress in the unrotated configuration is denoted hi 

0. These t.wo stress measures are relat.ed by 

u= RTTR . (2.14) 

Each material point. in the unrot.ated configuration has its own reference frame 

which rot.ates such that the deformation in t.his frame is a pure stretch. Then T is 

simply the t.ensor u in the fixed global rcfcrcnce frame. The conjugate strain rate 

measures to T and CT arc D and d: respectively. These strain rates were defined by 

Equations 2.4 and 2.7: rcspcctivcly. 

The Principal of Material Frame Indifference (or objectivity) stipulat,es that. a 

const.it.ut.ive law must be insensitive to a change of reference frame [9]. This requires 

that. only objcct.ive quantities may be used in a constit.utive law. An object.ive quantit.y 

is one \\rhich transfornis in the same manner as the energy c0njugat.e st.ress and st.rain 

rat.e pair under a superposed rigid body motion. The fundament.al advantage of t.he 

unrot.a.ted st.ress over the true stress is that t,he material derivat.ivc of u is objective, 

whereas the material derivative of T is not.. 

The Jaumann rate defined below is frequently used in constitutive relationships 

to resolve t,he need for an objective rate of Cauchy stress. 

+=+-wT+TW. (2.15) 

16 



it is an easy t,ask to show that the Jaumann rate is objective. 

A similar stress rate, called the Green-Naghdi rate by Johnson and Bammann [7], 

can be derived by transforming the rate of the unrotated Cauchy stress to the fixed 

global frame as follows: 

~=RRtrRT=‘k4T+TSL. (2.16) 

The Jaumann rate and the Green-Naghdi rate are very similar in form. The important 

difference between t.he two is t,hat the Green-Naghdi rat.e is kinema.tically consistent 

with the rat.e of Cauchy stress, while the Jaumann rat.e is not.. Ry this stat.ement. we . 1 
mean that & is identical t.o T in the absence of rigid body rotations. It. is clear t.hat T 

need not equal ?? under the same conditions since W need not vanish with rigid body 

rotat.ions. 

A distinct advant.age of the unrotated reference frame is t.hat all constitutive mod- 

els arc cast wit.llolut regard to finite rotations. This greatly simplifies t.he numerical 

imr~ie;nent.att.ion of new constitutive models, The rot.ations of global state variables 

(e.g., stress and strain) are dealt with on a global level which insures t.hat all constitu- 

t ive Inoclcls arc consist.ent . Int.ernal state variables (e.g., backstress) see no rot.ations 

\vllatsoei’cr. 

The dra\vl,ack 1.0 Lvorking in the unrot.ated reference frame is that. we must ac- 

curately tlcterrnirlc the rot.at.ion t.ensor, R, which is not a straightforward numerical 

calcuIatioIl. WC present a11 incrcIllent al, algebraic algorit,hm to accomplish this t.ask in 

Sectioil 3.3. 

2.1.2 Fundamental Equations 

The equations of mot.ion for the body are the moment.um equations 

VT-pii+pfB=O. (2.17) 

where p is the mass densit.y per unit. volume, ii is the accelerat,ion of the material point, 

and fD is a specific (force per mass) body force vector. 

IT\: e seek t.he solution t.o Equat,ion 2.17 subject to the boundary conditions 

u - f(t) on S, (2.18) 

where S, represents the portion of the boundary on which kinematic quantities are spec- 

ified (displacement, velocity, and acceleration). In addition to satisfying the kinematic 

boundary condit.ions given by Equation 2.18, we must satisfy the tract.ion boundary 

conditions 

T . n = s(t) on ST (2.19) 

17 



where ST represents the port.ion of the boundary on which tractions are specified. The 

boundary of t.hc body is given by the union of S, and ST, and we not.e that for a valid 

mechanics problem, S, and ST have a null intersection. 

The jump conditions at all contact. discontinuities must satisfy the relation 

(T+ + T-)sn = 0 on S, (2.20) 

\vhcrrc S, represents the corltac.t surface intersection and t.he superscript.s “+” and “-” 

clcnote different sides of t.he contact surface. 

The Lagrangian form of the continuity equat.ion is writ,ten as 

$--PtrD=O. (2.21) 

This is satisfied trivially in our formulation since we do not allow mass transport. 

Equation 2.21 tlcgcnerntcs to 

pl’ = pi)16 (2.22) 

where V is t.hc volu~ne and the subscript. “0” denot.es a reference configuration. 

‘1‘11~ conservation of energy principle equat.es the increase in internal energy per 

\lrlil VOIUIIIO io the rate at, lvhich v,Tork is being done by the stresses plus the rate at 

\vhich heat is being added. In t.hc absence of heat. conduc.tion 

a E,, 
J!% = “yjy- =o:d+& (2.23) 

\vherV E,, is t lir energy per unit \‘olume, E,,, is t.he energy per unit. mass, and Q is 

tile lIeill. rate per unit IIlitSS. The strex 0 and the strain rate d were discussed in the 

Section 2.2. 

18 
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3. NUMERICAL FORMULATION 

In this chapter, we describe t.he finite element formulation of the problem and the 

numerical algorithms required to perform the spatial and temporal integrat,ion of the 

equat.ions of motion. 

3.1 Eight-Node Uniform Strain Element 

The S-node three-dimensional isoparametric element is widely used in computa- 

tional mechanics. The determination of optimal integration schemes for this element, 

however: presents a difficult dilemma. A one-point integration of the element under- 

int,egrates the eleinent resulting in a rank deficiency which manifests itseli in spurious 

zero energy modes, commonly referred to as hourglass modes. A t wo-by-t.wo-by- t wo 

int.egration of the element over-int.egrat.es the element and can lead to serious problems 

of element locking in fully plastic and incompressible problems. The eight-point. in- 

tegration also carries a tremendous computational penalty compared to the one-point 

rule. We use the one-point intcgrat.ion of the element and implement an hourglass con- 

trol scheme to e1iminat.e bhe spurious modes. The development present.ed below follows 

directly from Flanagan and Belyt.schko [lo]. We assume that. t.he reader is familiar with 

the finite cIcn,ent met.hod and will not go into a complet,e description of the method. 

The reader can consuit numerous t.exts on the method, for example Reference Ill]. 

The hexahcdral element. relat.es the spat.ial coordinates I; to the nodal coordinates 

*r i I :,hrough the isopararnetric shape functions 4, as follows: 

ri = wdl(t, 77, C) (3.1) 

111 accordance \vit.h indicial notation convention, repeated subscripts imply summat.ion 

over the range of that subscript. The lowercase subscripts have a range of t.hree car-- 

*’ responding t.o the spat.ial co0rdinat.e directions. Uppercase subscript.s have a range of 

eight, corresponding to the element nodes. 

The same shape functions are used t.o define the element displacement. field in 

terms of t.he nodal displacement,s 11;1: 

ui = uiIdI U-2) 

Since the same shape functions apply to both spatial coordinates and displacements, 

their mat.erial derivative (represented by a superposed dot.) must vanish. Hence, the 

velocity field may be given by 

i!; = -;li*Cjbl j (3.3) 
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Table 3.1. Ort.hogonal Set of Base Vect.ors 

node t I c El AII A21 A31 r11 r2I l-31 L1 
1 -.5 -.5 -.5 1 -1 -1 -1 1 1 1 -1 
2 .5 -.5 -.5 1 1 -1 -1 1 -1 -1 1 
3 .5 .5 -.5 1 1 1 -1 -1 -1 1 -1. 
4 -.5 .5 -.5 1 -i 1 -1 -1 1 -1 1 
5 -.5 -.5 .5 1 -1 -1 1 -1 -1 1 1 
6 .5 -.5 .5 1 1 -1 1 -1 1 -1 -1 
7 .5 .5 .5 1 1 1 1 1 1 1 1 
8 -.:, .5 .: 1 -1 1 1 1 -1 -1 -1 

and likewise for the accelerat,ion field 

ii; = ii;l$l . 

The velocity gradient fensor, L, is defined in terms of nodal velocities as 

Lij = ili*j = irir+l,j . 

(3.4) 

(3.5) f’--- 

By convention, a comma preceding a lowercase subscript. denotes differentiat.ion with 

respect to t.he spatial coordinates (e.g., il;,j denot.es 5:~). 
I 

The 3-D isoparai;letric shape functions map the umit cube in (;-space (t; is written 

explicitly as ([, 77,i)) t o a general hexahedron in e;-space, as shown in Figure 3.1. We 

choose to center the unit. square at. t.he origin in ti space so that the shape functions 

may be convenient.ly expanded in terms of an orthogonal set of base vectors, given in 

Table 3.1, as follows: 

The above vectors represent the displacement modes of a unit cube. The first vector, 

Cl, accounts for rigid body translat.ion. We call C the summation vector since it may 

be employed in indicial notation to represent the algebraic sum of a vector. c 
? 

The linear base vectors Ai1 may be readily combined to define three uniform normal 

strains and t.hree rigid body rotation modes for the unit cube. We refer to A;1 as the 

volumetric base vectors since, as we will illustrate below, they are the 0x1~ base vectors 

which appear in the element volume expression. 
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Figure 3.1. Mode Shapes for the Eight-Node Constant Strain Hexabdral Element , 
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The last iour vectors, ml, (Greek subscripts have a range of four) give rise to linear 

strain modes which are neglected in the uniform strain integration. These vectors define 

the hourglass patterns for a unit cube. Hence, we refer to rar as the hourglass base 

vect.ors. The displacement modes represented by the vectors in Table 3.1 are also shown 

in Figure 3.1. 

in the finite element method, we replace the momentum balance (Equation 2.17) 

with a weak form of the equation. Using the principle of virt.ual work, we write the 

Lveak form of the equation as 

, 

cl (Tij,j + phi - piii)6UidV = 0 
e V, 

(3.7) 

where 671; represents an arbitrary virtual displacement field, with the same interpolation 

as Equation 3.2, which satisfies the kinematic constraints. Int,egrat,ing by parts and 

applying Gauss’ divergence theorem to Equation 3.7 then gives 

TijnjbuidA - 
.I 

Tijbui,jdV + 
V, J VC 

pbihuidl/ - Jc ,,i,,idV] = 0 * (3.8) 

The summation symbol represent.s the assembly of element. force vectors int.o a global 

nodal force array. We assume that t.he reader understands t.he details of this assembly; 

we will not. discuss it fu:ther in this document.. 

The second int.eg:al in the preceding equation is used t.o define t.he element internal 

force vector fi] as 

s”iI jil = 
J 

Tijhui,jdV m (3.9) 
v. 

The first and third integrals define the external force vect,or, and the fourth integral 

defines the inertial response. 

We perform one-point integration by neglecting the nonlinear portion of the ele- 

ment displacement field, thereby considering a state of uniform strain and stress. The 

preceding expression is approximated by 

fir = Tij J +l,jdV (3.10) 
V, 

where we have eliminat.ed t,he arbitrary virtual displacements, and T;j represents the 

assumed uniform stress field which will be referred t.o as the mean stress tensor. By 

neglecting the nonlinear displac.ements, we have assumed that the mean stresses depend 

only on the mean strains. Mean kinematic quantities are defined by integrating over 

the element as foilows: , # 1 ui,j = - 
J v v, 

tii,jdV 0 (3.11) 
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We no\v define the discrete gradient operator as 

The 11lea11 velocity gradient, applying Equation 3.5, is given by 

(3.12) 

1 
ti,j = --‘uilBjl a 

v 
(3.13) 

10 md 3.12, \ve may express the nodal forces by 

fil = TijBjr m (3.14) 

Clompu tiIlg nodal forces with this int cgration schenle requires evaluation of t.he 

g:ndicrtt o!)crator and the clement area. These two tasks are linked since 

Xi,j = l;ij (3.15) 

\vhcrp o;j is t.I\c Iiro~~ckcr delta. Equations 3.1, 3.12, and 3.1.5 yicltl 

(3.1i) 

‘1’0 intcgr;llc the elc~ncnt arca in closed form, WC use the .Jacobian of the isopara- 

metric transforrnal.ion to transfo;Irl to an integral over the unit cube: 

‘J’hc ,Ia?cohian is gi\‘ert in terms of t,he alternator Cijk BS 

J = E.. t? a,’ ‘= 
--. 

‘lk 8(i dvk 8(k 

(3.18) 

(3.19) 

Thcreforc, Equat.ion 3.18 can be writ,t.en as 

\’ = x*yJq&Jh’ (3.20) 

where 

(3.21) 
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Observe t.hat the coefficient ar:ay 5’1~~ is ident.ical for ali hexahedrons. E‘urther- 

more, it possesses the alkrnator properties as given below: 

C,JI\’ == CJR, - Ch’,J = -&J = --CJlh. = -&J1 (3.22) 

Therefore, applying Equations 3.17 and 3.22 t.o 3.20 yields the following form for eval- 

uating t.he B-ma?rix: 

r YJzK 

Bi, = 

I I 

ZJX;,’ CIJ’i ’ (3.33) 
XJyX 

In light of Equation 3.6, it is evident t,hat evaluating each component of C’~.JX 

involves int,egrating a polynomial which is at most. bi-quadratic. Jlnwever. since KC are 

integrat.ing over a symmetric region, any t.erm with a linear dependence will vanish. 

The only terms which survive the integration will he the const.nnt, square. double 

square and triple square terms. Furt.hermore, t,he alternat,or properties cause half of 

these remaining terms to drop out. The resulting expression for c/,Jh. is 

The above cxprcssion is evaluated using Table 3.1, after \vhich I?ractical formula 

for computing ihc B-lnatrix and volurnc are de\.cloped. Since C’,.,K has the alt.ernator 

propertics g;iven in EquatioIi 3.23, only 56 (1 he combination of tight-nodes taken three 

at a tinle) distinct nonzcro !CrillS are possible. However, the VOIUIIIP nlust be inde- 

pendent of the sclcct.ion of IIQ~C i, which implies that C’,.,,; I. ‘q invariant if the nodes 

are permuted according to Table 3.2. Consequent.ly, onI\ 21 (the combination of seven 

rtodes taken t.\vo at a t.ime) terms may be independent . E’urthermore~ mce node 1 is 

select.ed: three orirnt.at.ions of t.he node numbering syst.cnl are possible, as given by the 

pcrnnutat.ion Table 3.3. Therefore, only seven terms of c’,Jx need be evaluakd. 

Seven intlependcnt. terms of c’~Jh. are list.ed in Table 3.4. These terms may be 

evaluated via Equation 3.-‘ 71 and Table 3.1. Onl\l three of these seven t.erms do not 

vanish7 as indicated in Table 3.4. All ot.her nonzero t.erms of c]Jh’ are found by 

prrlnut.ing t hc nodes according t.0 Table 3.2 and using the a!t.crnat.or properties of 

Equation 3.22. Alternatively: the nonzero terms may be generat.ed by applying an- 

f isyInInct ry, <:I Jf( = 

a.ntl 3.3, successively. 

put.ing the B-mat ris. 

-&Jr to Table 3.4, then permuting according t,o Tables 3.3 

The latt.er scheme st.raigh!,forwardly resu1t.s ir. formula for com- 

The first term of Bi, is expressed as 

BIB = ;jyzk% - 23) - (z4 - ts)) + y&2 - =‘I) 
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( 1: 

0 

+y.@:3 - =e) - (25 - 22)) + ys((=s - 26) - (a - z-4)) 

+y6(25 - 22) + YR( 24 - h)] (3.25) 

01 her terms of B;I are evaluat.ed using t,he sa.me formula aft.er permuting the nodes 

according t.0 Table 3.2 and, subsequently, pe.rmut.ing the coordinate axes according to 

‘I-al)lo 3.. 5. l’he element volume is most easily computed by contracting the B-matrix 

and nodal coordinates as per Equation 3.16. 

Table 3.2. Nodal Permutations 

12345678 

23416785 

34127856 

4 1 2 3 8 5 6 i 
58761432 

7 6 5 8 3 2 1 4 

?‘i\l)lc 3.3. Three Possible Orientations of Node Numbering 

3.1.1 Lumped Mass Matrix 

111 order IO reap t.he benefits of an explicit archit.ect.ure, we must diagonalize the 

mass matrix. U’c do this by integrating t.he inertial energy variation as follows: 

where 

mIJ = pV&J (3.27) 
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Table 3.4. Nonzero Terms Generated by Applying Asymmetry 

128 0 

135 0 

136 0 

‘l‘ablc 3.:). (:oordinat.c Axes P-‘rrlnut,at.ions 

1 2 3 

I--- 
3 3 1 
3 1 3, 
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and (51.1 is t,hc Kroneker de1t.a. Clearly the assembly process for the global mass matrix 

from t.hc individual element mat.riccs results in a global mass matrix which is diagonal 

ant1 can bc cs,,ressed 2.S a vect.or, AT, . 

3.2 Explicit Time Integration 

PRONTO uses a modified central difference scheme to integrate the equations 

of Itlotion through time. By this we mean that the velocities are integrated with a 

for\vard difj’crcnce, ivhile the displacements are integrat,ed with a backward difference. 

The integration sche~l~c for a node is expressed as: 

(3.28) 

U,+At - 1.1, + A& (3.29) 

ll!+Af = Ut + Ah+at (3.30) 

,v],crc f”Sl 
t and ft’lVr are t.he external and internal nodal forces. respectively, M is the 

IlOtlill {>Oillt lllIIlpt?d IJliiSS, and A: is the time incremcr;t. 

‘I‘lrc cent ml difference operator is conditionally st.ablc. It can be shown that the 

(:ourant stability limit for the operat.or wit,h no damping is given in terms oft he highest 

In Scctiorl 3.5, U.C discuss how t.hc highest eigenvaluc is approximated and how we 

dct.erminc it stable tinlc increment,. 

3.3 Finite Rotation Algorithm 

We st.at.cd in Sect.ion 2.2 that. one of our fundamental numerical challenges in ihe 

development of an accurat.e algorithm for finite rotations was the det.erminat,ion of R, 

the rot.at.ion t.ensor defined by the polar decomposit.ion of the deformation gradient. F. 

We developed an increment.al algorithm for reasons of computational efficiency and 

numerical accuracy. The validity of t.he unrotatecl rcf:,rcnce frame is based on the 

orthogonal transformation given by Equation 2.14. Therefore the crux of int.egrat.ing 

F ,quat.ion 2.6 for R is to maint,ain t,he ort.hogonalit,y of R. If one integrates R = OR via 

a forward difference scheme, the ort.hogonalit,y of R degenerates rapidIy no mat.ter how 

fine the time increments. We instead adapted the algorithm of Hughes and Winget [12] 

for int.egrating incremental rotations as f0110WS. 
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:2 rigid body rotation over a time increment Af may be represented by 

XttLlt = Q~txt (3.32) 

\vhcre QA1 is a proper orthogonal tensor with t.he same rate of rotation as R given 

II!. Equation 2.6. ‘The t.otal rotation R is updated via the highly accurate expression 

bClO\V. 

R 1tAf = QA& (3.33) 

For a const.ant rate of rotation, the midpoint velocity and the midpoint coordinates 

arc rclat cd 1)) 

,$+A, - XI) = $(&+A, 
_.-- +x,) . (3.34) 

(:ombining ICquations 3.32 and 3.34 yields 

( Qa, - 1)x, = +Q,, t- 1)x, . (3.35) 

Since x, is arbitrary in Equat.ion 3.35, it may be elinlinatcd. \\.e then solve f3r QAt. 

‘I’hc result iy 

Q.w= (I-$o)-~(I+$~) . (3.36) 

‘The accuracy of this integration scheme is dependent upon the accuracy of the 

rliidpoint relationship of E(jiiation 3.34. The rate of rotation nlust not vary signifi- 

carlt ly o\.cr the t inrc ir~cremcnl . Furt hcrrnorc. 1Iughcs and \l’inget (I?] sho\ved that the 

<onclit ionirtg of 13quatiort 3.3Ci degenerates as Ala grows. 

Ollr cl)rnl)lcte riurrrcrical algorithril for a single time step is shown in Table 3.6. 

This algorithm requires that the tensors V and R be st.ored in memory for each 

elcrrient.. 

3.4 Determination of Effective Moduli 

Algorithms for calculat.ing the stable t.ime increment,, hourglass control, bulk vis- 

cosity, RII~I nonrc;lect.ing boundaries require dilata.tional and shear moduli. In PRONTO 

WC USC an algorithm for adaptively determining the effective dilatational and shear 

moduli of 1 he mat,erial. 

Sinc.e PROIc’TO uses an explicit. int,egration algorit,hm, the constitutive response 

over a time st,cp can be recast. a posteriori as a hypoelast.ic relationship. We approxi- 

mat.e this relationship as isotropic. This defines effect.ive moduli, i and C; in terms of 

t.he hypoelastic stress increment and strain increment as follows: 

Ay;j = Ai!(idkkbij $ 2@dij) (3.37) 



C‘ . 

Table 3.6. Finite Rotation Algorithm 

1. Calcu1at.e D and W 

2. Compute Zi = eijkVjmDmk 

w = w - 2[V - 1tr(V)]-‘z 

Rij = :EijkWk 

3. Solve (I - $fl) R(+A~ = (I + $/R) R, 

4. Calculate V=(D+W)V-VR 

5. Update Vt+Al = Vt + At+ 

6. Comput,e d = RTDR 

7. 1ntegrat.e C? = f(d,a) 

8. Compute T = RaRT - 

Equation 3.37 can be rcwritt.en in terms of volumetric and deviatoric parts as 

an d 

where 

and 

The effect,ive bulk modu 1 

‘I’aking the inner produc 

Aukk = At(3i -t 2jI)dkk 

Sij = At2fle;j 

1 
sij = Aaij - - Aakk6;j 

3 

eij = dij - idkk6ij s ’ 

us follows directly from Equation 3.38 as 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

of Equation 3.39 with the deviatoric strain rate and solving 

for the effective shear modulus 2b gives 

2@ = 
S;jeij 

Ate e * mn mn 
(3.43) 

Using the result of Equation 3.42 with Equation 3.43, we can calculate the effective 

dilatat.ional modulus i + 2b: 



Table 3.7. Special Cases for Effective Moduli 

Atdkk > lO-‘j A.!2e;;e;; > lo-l2 x + 2jL 2,; 

Yes 

Yes 

NO 

- I 

Yes 

No 

Yes 

Eq. 3.44 Eq. i.43 

X0 + 2p. Eq. 3.45 

X0 + 2p. Eq. 3.43 

ii0 No x0 + 2po x0 + 2110 

If the strain increments are insignificant, Equat.ions 3.42 and 3.43 will not yield 

numerically meaningful results. In this circumstance, PRONTO sets the dilatational 

modulus t,o an initial est.imate, X0 + 21~0. An initial estimate of the dilatational modulus 

is, t.herefore, the only paramet.er which every constitutive model is required to provide 

t.o the time st.ep control algorithm. 

In a case where the volumetric strain increment is significant, but the deviatoric 

increment is not! the effective shear modulus can be estimated by rearranging Equa- 

t ion 3.44 as follows: 

2; = $(3(X, + 2/l()) - 3lt) (3.45) 

If neither strain increment. is significant, PRONTO sets the effective shear moduIus 

equal t.o the initial dilatational modulus. 

The algorit.hm that PRONTO uses to estin1at.e t!le effective dilatational and shear 

nloduli is sullllnarized in Table 3.i. Note t.hat. either of effective moduli calculated via 

this algorit.hm may be zero or negat.ive. These degenerate cases must be taken int.o 

account whenever these moduli are used. 

3.5 Determination of the Stable Time Increment 

Flanagan and Belyt,schko (13) p rovided eigenvalue estimates for the uniform strain 

hexahedron described in Scct.ion 3.1. They showed that the maximum eigenvalue was 

bounded by 

8 
X + 211 Bir BiI L w2 
-7 

> f X + 211 BiIB;I 

P* 
mar - 

2 P -7’ (3.46) 

Using the effective dilatational modulus from Section 3.4 with the eigenvalue estimates 

of Equation 3.46 allows us to write the stability criteria of Equation 3.31 as 

30 
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\v}l(:r(- C’ is f !I(’ tIiIiI1itt~OllFll \\‘;l\.C FJlCCd. 

.l‘llc>rv ilrc‘ 1 \\‘0 fllll~li\i~lCIltill ilIl(l iIi~l)ortant difl‘crcrlccs t)?t \\‘wII ill? t illlc incrr-lIlc~lll 

IirIiits gi1.f.11 1)). I.:(tl~;itio115 3.(17 ilIltl 3..51. First. our tirilc ilic.rcnlc*rlt limit is tl~~~~TldC111 

orI ;l C~lilrilCt~‘ristiC c~lcrtlCrtt tlirlicrtsion. ivhich is Jlasctl on t hc firiitv c~lcIncnt gritdicrlt 

oJ)(‘r;lt or anti ~10~~s not rvcliiirc ill1 at1 hoc guess of tllis tliIlicnsion. This charactcrislic 

C~CIIICIII tliIIlcrlsioI1. 1. is tlcfinctl by iIlSJ”cfiOIl O[ ~*~cJlI:ltioIl 3:li iIS 

Soco~~d. the soused speed used in t.he estimate is based on the current response of the 
mat.erial and not on the original elastic sound speed. For materials which experience a 



\\‘~ivrv \-:I ih ~isc-tl lo ;tiairitaiIi consislvnt irltlcs notation iintl indicates tllat 111; and f-i 

arc intlcl)c~rltlvrlt of poTit ion wit bin t IIC clcn~cnt . From Equations 3.16 and 3.56. and 

tier orthogoniilit~~ nf llic hilsc \‘vctors: it fc)llO\YS lhat 
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For the purpose of coritrolling the hourglass modes. w define generalized forces 

CL. ~vhich arc conjugalc to i,, so that the rate of work is 

TIVO ~J’J)CS of 11ourglal;s resist ante arc possible: artificial stiffness and art ificisl 

darn j)iriK. III I~I~OSI‘O 31) we use onl~ the stiffness resistance. In terms of the tuneable 

st ifi‘ncss h’. t lie resist ancc is given I,\ 

(3.69) 

Ol)cc~r\~c 1 llill 1 lrc nocl;tl ;~IltillOll~~lii~~ forces of I-C]lIiitiOIl 3.M have the shape Of 

-;,,; rat 1lc.r 1 \liIli I‘,,,. ‘I’lli> fact is esscutinl since the antihourglass forces ~110uld be 

orl tloI:or~irl to 1 IIC~ linear 1.c*locit!. field. w . that no energy is transferred to or from t-he 

rigi, l,OCl~~ ilJld Ilrlif~~rlll .~t rain IIIO~~Y bv the antihourglassjrlg scheme. 

3.7 Artificinl Bulk Viscosity 

.-\rtificial vi,co,ity is apI~licd to the nuillerical solution for t\vo reasons. First is to 

prevent llifill veloc.it\~ gr;rtIic,ilt s fro111 collapsing an clclncnt bcforc it has a chance to 

respond. :I‘hc s.t~co~~d reason is to quiet truncation frcquenc~ “ringiug”. 

Itlcall~-, OIIC \.ould like to add viscosity only to the highest mode of the element, but 

isolating tliis 1110dr is impractical. Tlie st audard t cchniquc is to siiii’j>l!’ add viscosit) 

to t hc volulnct ric or “bulk” response. Tllis generates a viscous pressure in tcruts of the 

vo111111c strain rate as follo\i-s: 

*. . . 

’ i 1 
2 

q = 1,,pc1; - p L21.; ,* (320) 

\vhcre bi antI 1): arc coefficients for the linear and quadratic terms, respectively. The 

quadratic tcrrn in Equation 3.iO is more important and is designed to “smear” a shock 

front across several elenicnts. This term yields a jump in energy as a smeared shock 
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TIIC linear ter111 is intended to dissipate truncation frequency oscillations. The 

quadratic tcrrll is only applied to coIllprcssive strain rates since an element cannot 

cOlla])SY in CSpilIlSiOIl. 

The preceding csl)rvssion is siIiiplifiet1 if u ‘c use the undamped stable time incre- 

Itlent defined l)y I:qllatiolk 3.47 and xrlte 

or 

(3.X) 

(3.72) 

where ??I IS the clClll~1:~ IllilSS. \\‘c 110w define tlie factor c such that the quadratic 

\.iscosity tcrni vanishes in csparisiori 

( = h, -- ij:Ai nlin( 0: L)kk) . (3.i3) 

This qunlltit!. is rcquircd for tllc darllpcd slahility criteria of Equation 3.50. .Xote that 

the coudit ion iIrlposcd 1)~ lCqua1 ic)Ii 3.49 prcvcnts Equation 3.73 from yielding so large 

a value of c t II;11 Equa7 ioli 3.50 \vo~iltl riuIiicrically yicltf a zero value. 

\‘\‘c \vill slio\v hclo\v that ( CilIl l)r usctl to cst irnnt c I h(> fraction of critical damping 

in tlic liiglicst clc~i~cr~l mode. I:sing I:quation 3.73 in I~quatiori 3.72 allows us to write 

1 hc viscous prcssurc as 

‘l’lic hulk viscosity prcssurc is appended to the strcsscs during the internal force calm- 

latioris to yield the follo\ring forces. 

fi! = qBi1 * (3.i.5) 

The above cspression call he expanded using Equations 3.i2 and 3.73 to yield 

(326) 

This form indicates that if BiI is an eigenvector, the modal damping is 

Cl/ 

CP- 
1 

(3.77) 

35 



The critical damping estimate of the maximum element frequency is 

(3.78) 

‘I‘hc t Iv0 expressions abo\-c show that c is half the fraction of critical damping in the 

highrst niotle. 

3.8 Adaptive Element Deletion 

Thcs adaptive element delet.ion option was added 1.0 PRONTO 3D I.0 provide the 

capability to model catastrophic material failure. This option should not. be confused 

\vit h tlic clenicnt block deletion option (Appendix A, command 32) which can be used 

to rcmovc an cntirc block of material from the analysis at some predetermined t.ime. 

The keyword here is “adaptive”. PRONTO allows the user 1.0 specify criteria which 

define \vhcn the nlat.erial fails wit.hin an clement. This criteria is defined at the element. 

level and PRONTO checks every time st.ep to determine whet.her material failure has 

occurred. 

Currcr~llj.~ 1 hc user Cilll define failure in l.erms of energy per unit volumc~ \lonh1iscs 

st rcss, ljrcssurc, or III~~S~III~JIJ principal stress. Also, failure criteria can be defined in 

tcrriis of an\. iritcrnal state \ariablc. Note that the prcssurc is positive in compression: 

IJ = -- I r(g). ‘The adaI)ti\.c clcnicnt d<ath capabi1it.y requires a very mature user who 

llIld~~St.iLIltlS 1JOM’ t IIC IIlil!.CI’iill bChil\C’S. The capability built into the code is quite 

general, and it is possible for the user to define a nonsensical failure criteria. PRONTO 

allows t IIC user to spccifj. the failure in terms of a particular variable, a prescribed value 

of the \!ariablc al failure, and ~.hat \vc refer to as the IJJO~C of Failure. Hy mode WC 

IlJCi111 IJJiJliIllllIll, IJlilXiJllllIll, OT abSOll1t.C’ VillUe. 

The adaptive clcincnt tlclction capabi1it.y is completely vectorized and does not. add 

any appreciable co~nput ational penalty. \+‘e define a st.atus array (length=NUMEL) 

which hiIS a value of one or zero. If an clement. is “alive” , t.he stat.us array contains a 

value of one for that clement. When PRONTO detects that the element has “died”, 

t.hc value of the st.nt us array for that. element is reduced t.o zero over five t.ime steps. 

PRONTO uses the status array to wipe out any cont.ribut.ion t.hat, a delet.ed element. 

makes in st cp I of Scct.ion 8 .2. Each deleted element undergoes all t,he calculations 

which it would if it \vcrc not delct.ed, but. it.s cont.ributions are not inc.luded in the 

t.ime step control algorit.hm nor t.he st.ress divergence. This is accomplished by a few 

multiplicat.ions of crit,icai resu1t.s by t.he st.at,us array. If the element is not deleted, the 

resu1t.s are multiplied by a one and the results are unchanged. If the element. is deleted, 

the result,s are multiplied by a zero and the results are neutralized. Hence, the overall 

cost of t,his algorithm is a few multiplications per element. 
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When the element is delet.ed, its contribution to t.he nodal point lumped mass is 

still retained. \I’hen all the elements connected t.o a particular node are deleted, the 

node then becomes a free nodal mass, whose motion PROKTO cont,inues to calculate. 

It is more convenient for post-processing to define the status array exactly opposite 

to our convention. For this reason, each value is flipped as the status array is written 

to the post-processing data base. Note that if the adaptive element deletion and/or 

the element \~lock deletion options are used, the element. status array is automatically 

writ.ten to the data base. 



4. CONSTITUTIVE MODELS 

One of the prin:ary reasons for developing PRONTO was to have a numerical 

testbed for developing constit.utive models. As a result, considerable effort was directed 

to write a flexible material interface subroutine which allows a constiautive model to 

be added to the code with minimal effort. The MATINT subroutine in PRONTO 

allows a constitutive modeler to add a new mat.erial model to the program by filling 

in a handful of Ilunlbcrs in data statekeI1t.s which tell the program how to set up the 

int.ernal data base for the new model. Consequent.ly, the constitutive modeler does not 

have t.o understand the inner workings of PRONTO and does not have to write any 

format stat.cmcnts or juggle t.he meInor\: allocation in the code. The comments in the 

FORTRAN explain in great detail how to add the new model. See Appendix C for the 

steps to bc taken to add a new constitutiw model. 

Currently thcrc arc w~cn material models in the code. Since models can be 

added \\.it 11 such cast. this number is expected to increase as applications requiring 

nc\v materials arise. 

All n1atcrial ~nadcls are lvritten in terms of the unrotated Cauchy stress, 0, and 

the tlcforIl]ation rate in the unrotatcd configuration, d. 
{:’ . . 

For each of the materials described below, we give a list of the int.ernal stat.e 

variables u~ecl in that particular material model. \\:e also give a list of the material 

cor~st.ants \4.hich arc stored in the PROP array (Appendix B, Sect.ion 5.0). In the list 

of material properties, the items marked with an “*” are material properties which 

arc calculated internally. The remaining mat.erial properties are the actual values read 

from t,he input data. 

The relationship between the material models described in this chapter and the 

cquat.ions of state clescribed in Chapt.er 5 inust be undersi.ood in order to properly use 

the equations of state. \4te have struct.ured PRONTO so that mat.erial models can act 

as a host to an equation of state. Not. all of the const,itut.ive models describe2 in this 

chapt.er do so. The equations of state cannot be used except in conjunct.ion with a 

material model. The equation of state can only calculate the volumetric material re- 

sponse. The hydrodynamic material model (Section 4.7) has only volumetric response 

and just calls the specified equation of stat.e. The elastic plastic hydrodynamic mate- 

rial model (Section 4.9) uses classical .Tz p1asticit.y t.heory to determine the deviatoric 

mat.erial response and calls the specified equation of state for the volumetric material 

response. The other constitutive models in this chapt.er could be restructured to use 
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‘I‘aI)lc ~1.1. Sig” convention uscti for pressure in each material model 

_-.-_._- -_.__._--__ 
Xl odcll --- -. - -.-. 

: Elastic 

Elastic-Plastic 

Tension Compression I 

JlOSj!i\:C negative 

positive negative 



4.2 Elastic-Plastic Material with Combined Hardening 

‘1’1~~ elastic-plastic model is llased on a standard vonMises type yield condition 

and uses combined kincrliatic and isotropic hardening. This model is widely used in 

many finite ele~lle~lt arid finite difference computer programs and the many details of 

its derivation are scattered throughout the literature. Here, we present. the model in 

tlet ail because we feel that many users of the Inodel are not familiar with its underlying 

ilSSllII1 J)tiOIlS aIld nutlicrical aI)J)ro>(i~llations. 

4.2.1 Basic Cefinitions and Assumptions 

Some definitions and assumptions are outlined here. Referring to Figure 4.1: which 

Cho\v5 the !.icld surface in dcvialoric stress space. we define the hackstress (the center 

of the !.icltl surface) by the t cnsor. a. If Q is the current value of the stress, we define 

t11c de\.iatoric J)ilrt of the currml st rcss 1)~. 

!3-~7--~tra15 (4.2) 

\\‘c tlefiIIe t ile sl rcss tlifl‘c~rcllcc Illc’ilSI1~~‘~1 I)\. SuI)l ritCt irig t IIC I)itCkSt ress from thC dcvi- 

atoric 51 rcss l)\, 
( L s --. (y (4.3) 

‘J‘1lc IllilgIlit ~itlt, of 111~ dcvi;1toric stress difl’crcncc? /i. is dcfinctl I>\ 

/j Y ( ,-1 ,?‘( : ( (4.4) 

\vlicrc \vc clc110tc 1 IIC ilrlicr product of second order tensors b> S : S = .$;.;5;‘;.,. Sate 

that if the haclist revs is zero (isotropic hardening case) the stress difference is equal to 

t11c clcI.iatoric part of IIie current stress: S. 

7‘11~ \-011~1isc~s yicltl surface is tlcfinetl as 

J(a) = ;( : ( = K?. (4.5) 

The \.oIIAIisc:; cfl‘ccl ivc stress. (5. is defined 111 

-- 
8 = Jg :lf . (4.6) 

Since R is the nlagnit.ude of the deviat,oric stress tensor when a = 0, it follows 

tha 
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Fig1m 4.1. \‘icltl Surface in Dcviat.oric St.ress Space 



I‘ he r~o;n~al to the yield surface cm be determined from Equation 4.5 

a 
Qrg-=; 

I ‘I I l3b I 

0 

(4.8 1 

\\‘c ~~SI!IIIC that t lie strain rate can be decomposed into elastic and plast.ic parts 

l)y an adtliti\.v dccornpositioxi J-- 
d = d” + dp’ c (4.9) :.+ ) 

nnd ~s.c,I~I!I~ that the I)Iastic part of the strain rat.e is given by a normality condition 

d” = ?Q. (4.10) 

Jvherc t hc scalar :nl:ltiplicr, 7, is to be determined. 

.A scalar 111cas11r~ of f’quivalcnt plastic strain rat.c is defined by 

tid 
-d = Q : d”’ . (4.12) 

‘I’llc, St Russ rate is ass~lrl~~tl to bc purely due to tile elastic part, of !,he strain rat: 

(4.13) ;:.-.I 

I~c~lo\~.. \VC* d~~~~~~lo~~ t IIC t lIeor? for t hc casts of isotropic 1~ardenin.g~ kinemat.ic hard- 

crlillg ill,tI corllI)iIlc*tI IIi\r(IcIIirlg scl);Lr;it CIy SO that the reader CM SW the details of each 

CilS(‘. 

4.2.2 Isotropic Narclening 

III t IIC isot roj)ic hartlcning case, the backstress is zero and the st.ress difference is 

cq11;il to 1 hf. clc\.ialoric si r(‘ss. S. WC \vrit c a consist.ency condit.ion by taking the rate 

of Kquat ion 4.5 

j(u) = 3Kk. (4.14) 

13 j’ “coIIsist my: IVC lllciiIl that the state of stress must. remain on the yield surface 

at all tinles. WC use the chain rule and the definit.ion of the normal to the yield surface 

givcIi by Eqllation 4.S to obt.ain 

j(b) = 2 : ir = /I /I 2 Q:b 
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The current normal to the yield surface? Q: md the total strain rate, d, are 

l;no\vn qu;t~~litic>s. llcncc. from Equation 4 .24. 3 can be determined which can be 

uwii in Ilqll;t~io~~ ~1.10 to dctcrlninc the plastic part of the strain rate which, wit.h the 

atlclit i\.~ St rain rat c‘ tlccoIllI)osit ion ;,nd the elastic stress rate of Equations 4.9 and 4.13, 

CCilll~)le1CS t11c dcfirlitiorl of tile rate equations. 

\\‘c still Inust esljli\in IIO\V to integrate the rate equations subject to the constraint 

t ll;tt t IIC st rcss nlust re1llain on the yield surface. We will show how tha? is accomplished 

in Section -i.Z.F). 

.111st ;ts I)cforc- \vit h the isotropic hardening case, we write a vonhlises yield condi 

1 iorr bul IIO\Y iI1 t c-rllis of the st rcss tliffcrcncc 

f(C) = $( : ( = K2. (4.3.5) 

It i> illlI)orl;tIil to rclllcsltll)cr t II;11 Q antI t are devialoric tensors. The consisttnc~ 

(.oll(lil i0r1 i.- \\.rll l(-It for kirlc~ll1;11 ic Itarticnirtg itS 

.f ! ( 1 -= (1 (3.X) 

ii II d 

(‘ollll)irlills l.Icl~~alior~s A.:!; ant1 4.-c ‘)4: and assuliiing that R + 0 

Q : i = 0 (4.29) 

or 

Q:(i--&)=O . (4.30) 

,-\ ~:c~oll;c~1 ric irilcrl)rc~latior~ of I:quation 4.30 is shoIYn in Figure 4.3 \vherc it can be seen 

1 Ililt 1 llc IjitCI<Sl rrss 111o\‘e; in ;I direct ion parallel t 0 t llc normal lo the yiclcl surface. 

\\‘c must riot tlccldc how & is defined. Recall that for the isotropic hardening 

case. Ecluat ion 4.30 

Q: (+= = f H’, ‘. 



._: 

.’ 

‘\ 
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The kinematic hardening condition BSSI~IIICS that 

where c,+ is a material parall~ctcr. ICqu;rt ion 4.32 coritbincd \vit 11 Equation -1.3CJ gives ii 

result identical to t hc isot rol)ic l~artlc~~ir~g CiiS(‘. I~Cq~~ation 4.31. if 0 is choscrr to be $11’. 

Hence, either Equation 4.31 or 4.32 gives us il scalar contlitior~ 311 &. Sol? that hot11 

of t,hese are assumptions and niust he slio\vrt to he rCi~SOIl;i!)lc. Of course. caspc-ricncc 

with material moclcls based on t ltcsc assutttpt ions has I)rovcn t licni to hc rcasona\)lc 

representalions 9f material llchi\ViOr. 

Using Equat.ion 4.31. the strain rate decomposition. Equation 1.9. and tlic clas- 

tic strain rate: Equation 4.13. in the consistent! condition for kinematic hardcning. 

l::quation 4.30 gives 
$‘,Q = kfr - C : d”‘. (4.33) 

‘l‘;,kirlg tllcb tcrlsor inner product. of hOtI1 sides of Equation -1.33 with Q Kivcr 

Q : $'yQ = Q : (5" - “/qQ) (4.31 ) 

\\.llicil i> tII(’ 4illllC' rc’..llll ii> \Vil 4 ol)~air~cd for the isotropic hardening case. 

4.2.4 Comhi~lctl lsot ropic and Kinematic Hardening 

0 2.3 < 1 . (1.36) 

\\‘c use the results tlerivctl lwiorc for the intlcpcndcnt hardcning cases and multiply 

1)~ the appropriate fractiou for cacll type of hardcuing.. Equations 4.10 and 4.32 are 

1 c\Vrit t cIi i!S 

i< = &@/3 (4.37) 

4i 
Ix. 

‘5 .’ 
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C’ ! ._ 

a I1 tl 

ci = $‘d”‘( 1 - /3) = ;H’yQ(l - /?). 

;Is bcforc. LVC \vrite a consistency condition 

(4.38) 

Q:(=Fi (4.39) 

or 

Q : (i - ci) = ,,&‘t?pi/3. (4.40) 

I’4ing t llr vlast ic :trvss rate and the additive strain rat.c decomposition wit,h Equa- 

tion 4.40 a11d taking t llc tellsor product with the normal, Q 

Q : 2’ - -/Q : C : Q - Q-: [iH’?( 1 - $)] : Q = Q : [ &Hf&~y] : Q (4.41) 

-r = (1 ;KJ Q:d 

\vllic-ii is lltt> S.;\IIIC rtaslllt as WC obtained for each of the independent cases. 

\\‘c> s\llllIllitri%c t 11~ governing equations for the combined theory: 

dp’ = 

b = C : (d - dp’) = btr 

1 
-.---Q:d 

4.2.5 Numerical Implementation 

(4.42) 

(4 .43) 

(4.44) 

(4.45) 

(JAG) 

(4.47) 

(4.46) 

Our finite elrment algorithm requires an incremental form of Equations 4.43-4.48. 

Additionally! we lllust have an algorithm which integrates the increment,al equations 

subject to t.he constraint that the stress remains on the yield surface. 



The incremental analogs of Equations 4.43 through 4.45 are 

tr 
~*+1 = on+1 - AY%Q (4.49) 

R n+l - - R, + $H’Ay (4.50) 

and 

a,,+1 = a, + (1 - p)$H’AyQ (4.51) 

where Ay represents the product of the time increment and the equivalent, plastic st.rain 

rate (hy = Aly). Th e subscript.s R and n + 1 refer to the beginning and end of a t.ime 

st.ep, respectively. 

We also need an increment.al analog to the rate forms of the consistency condition 

given by Equat.ions 4.14, 4.26, and 4.40. At the end of the time step? we insist that t.he 

stress stat.e must be on the yield surface. Hence: the increment nl consistency condition 

is 

%,Sl f Rn+,Q = Sn2.1. (4:52) 

Fc . , ~uatlon 3.52 is s11ou~r1 graphically in Figure 4.5. 

Sul)stitutirlg tllr. definitions giver] 1)~ Equ;ttions 4.49 through 4.51 into the consis 

t YIICJ’ corlditiori of 1’:cjuat ion ‘1.52 

- Rn) . (4.54) 

lt f(~ll(~\vs fro111 i.:(Itii~t i011 .I.54 t Ii;11 t hc plastic st.rain increment is proportional to t.he 

Ilj;iKIlit r~tl~ of t II(* (sscuryiorl of tllc ctlastic trial stress past the yield surface (see Fig- 

\ir(’ ,I.(; I. 

I’xiIlg t IIP rcslllt or l~clui\tioIl 4.54 in Equat.ions 4.49 through 4.51 completes the 

ill~0~il~lIll. Iri i,tlditiOIl. \\‘f‘ can compute 

Ad”’ = AyQ (4.55) 

il II ( I 
A.ljp’ = &A,. (4.56) 

7‘11~ results of Equation 4.54 applied to Equat.ion 4.49 show that the final stress 

is c;\lculi\tctl 1)~. ret lrrning the elastic trial st.ress radially to the final yield surface at 

t hc end of the time step. (Hence the derivation of the name Radial Return Method.) 

Lstimates of the accuracy of this method and other rnqthods for similarly integrating 

the rat.e equations are available in Kricg and Krieg 1141 and Schreyer, et al. [l5]. Note 

that the last term in Equation 4.49 (the radial ret.urn correction) is purely deviatoric. 

50 



Q n+l 

Figure 4.5. Geo111et ric Interpret at ion of the 1ncrexnent.d Form of the Consistenq 

(:ondition for Combined Hardening 
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Figure 4.6. Geomet.ric Interpret at ion of the Radial Ret.urn Correction 
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The elastic-plastic material model uses eight in ternal state variables: 

EQPS - equivalent, plastic strain 

RADIUS - current. radius of yield surface 

ALPH.4 11 - xx component of backstress in unrotated configuration 

*4LPI1:122 - yy component of backstress in unrotated configuration 

ALPH.433 - zz component of backstress in unrotated configuration 

ALPHA12 - xy component of backstress in unrotated configuration 

ALPHA23 - yz component of backst.ress in unrotated configuration 

ALPHA31 - zx component of backstress in unrotated configuration 

The PROP array for this material contains the following en,tries: 

PROP(I) - Young’s Modulus, E 

PROP(‘) - Poisson’s Ratio, J/ 

PROP( 3) - 

PROI’(4) - 

PROP(S) - 

* PROP(G) - 

* PROP( 7) - 

* PROP(l) - 

* PROP(S) - 

* PROI’( 10) - 

* PROP(N) - 

Yield St.ress: uyd 

Hardening hlodull 

/3 
$1 

311 
J /(%4 A- W/3/l ) 
A - 
‘31!‘/3 
‘7( 1 - ~~)N’/3 

4.3 Viscoplastic Material Model 

us, E’ 

(Xote:H’ = H/( 1 - H/E) 

The vixcoplastic material model presented here represents a simple rate dependent. 

plasticity model. The model is intended for relat.ively low strain rate (l/d]1 < 200) and 

is not reconlruendcd for high rates of impact. More det,ails of t.he model can be found 

in Taylor and Becker 1161 and Perzyna [Ii]. Th e model assumes an addit.ive strain rate 

decomposition identical to t.he elastic-plastic model 

d = d” -t dp’. (4.57) 

The stress rate is assumed t.o be given by the elastic part of the strain rat.e using 

Hooke’s la\{ 
& = C : d” = C : (d - dp’) (4.58) 

which can be writt.en more clearly in index notation as 



\Ve define the vonhlises equivalent stress by 

e=JjiTs=J~ (4.60) 

where S is the deviatoric part of c 

For this isothermal model, we use isotropic hardening only. Hence, we can write 

the yield stress as 

uo = uo( z”) (4.61) 

inhere P’ is t,he equivalent plastic strain. In this model, we assume isotropic hardening 

with a Hardening h/Iodulus, E’. This is defined by identifying an equivalent plastic 

strain rate by 

and 

\\‘e define the yield function as 

f(a,uo) = a - ug(dpr) . 

‘The plastic strain rate is assumed to be given by a stress poten t.ial as 

$1’ = ‘d”) 
da 

and \VC ~SSUIIIC an associated AOLY rule which implies that. 

9w = id 

Then Equation 4.G.i can be written as 

\A’e IJSC a power law for $j 

89 

i 
y e-1 ( > 

P 

z= oq 

c? > uo 

a < UC-J 

(4.64) 

(4.62) 

(4.63) 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

where 7 and p are mat.erial paramet.ers. 

Equation 4.68 indicates that the plastic strain rate is proportional to the overstress 

above the current. value of the yield stress. Hence, the higher the overstress, the greater 
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t,hc plastic strainy which leads t,o a reduction in the st,ress rate given by Equat,ion 4.58 

and an increase in strain hardening given by Equation 4.61. 

Consider a uniaxial t.ension test. The solid curve shown in Figure 4.i shows the 

locus of apparent yield st rcngths ey for mild steel at different strain rat.es. The apparent 

yield strength is t.he measured yield strex1gt.h for a specimen from a tension test at a 

given st.rain rate. At different st,rain rates, different yield st,rengths are found. If the 

elastic strain rat.c is assumed negligible, usin g Equation 4.67 and 4.68, the uniaxial 

strain rat.e is 

(4.69) 

Sol\.iug Equation 4.69 for tile vonhlises equivalent st.ress gives a relation for the 

;t~li)iLreIlt yield StrCS:: I - =I70 I+ i p . u.v [ 01 (4.70) 
Y 

If t.hc rate of clcforrnat.ion is very slow (e.g., d -L 0), or the fluidity constant. is very 

large (e.g., 7 --+ rx, ). then the yield st.rcss given by Equiltion 4.iO is equal to the st.at.ic 

yiclcl st rcss a11t1 t Ire SI at.ic yield condit.ion of it rat.e-irlcicpcllderlt const it utive t.heory is 

satisfied. If tllc xlotiorl is very rapid (e.g., d --+ 00): or the fluidity const.ant is zero, 

t hc rcsljonsc is clast ic. . 5incc t hc value of yield stress is no1 rest.rictcd by Equation 4.70. 

L’alucs of cfl‘ectivc yield st.rcss as a function of strain rate for diffcrcnt. choices oi the 

flol\ l)araillcbcrs. 7 illld 1’. arc sl101vn in Figure 4.7. 

Ii follo\vs IIlilf 

ii I1 d 

I..Tsirlg t 11csc tlefiilitiorls of t.he flow pot,ent,ial in Equnt.ion 4.65 yields 

(4.71) 

(4.73) 

(4.73) 

The uuIllcric;tl algorithm used in t.his model consists of a backward difference 

int.cgratiou of t 11c rate equat.ions. The algorithm proceeds as shown in Table 4.2. 

The viscoplastic mat.erial model uses two internal st,atc variables: 

EQPS - equivalent plastic strain 

SIGYLD - current value of yield stress 
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Figure 4.7. Yield Stress as a Function of Strain Rate as Defined by the Viscoplastic 

Material Model 
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Table 4.2. Algorithm for Viscoplastic Material Model 

1. C:alculatc t.he elastic trial st.ress 

4:+, = u, + QtCd 

2. C’alcu1at.e the equivalent, t,rial stress 

$’ _ Jm 

3. Check for yield 

ii - ag(&“) 5 0 ; skip step 4 

ii - aO(&‘) > 0 ; continue below with st.ep 4 

4. J’ieltl exceedcr!, calculate 

ADP = y (!?& - 1pp 

Au = C(Atd - Adp’) = 0” - 2/iAdP 

c7 n+l = UT, -i- Aa 
nil 

“0 = O”(rlPI + Aq+,) _- -~---------..‘11 

‘l‘lle 1’1~01’ array for this material cant ains the follbwing entries: 

f’ROI’( 1 ) - 
PROI’ - 
l’RoP(:I) - 
PROI’(4) - 

I’ R 0 I’ ( 5 ) - 

PROI’( 6) - 

* PROP(:) - 

* l’ROP(8) - 

* f’ROP(9) - 

4.4 Damage Model 

The damage model in PRONTO simulat.es the dynamic fracture behavior of brit.t.le 
-,.c 1. I"LR. It is based on Fork started by Kipp and Grady, [18] continued by Taylor, Cohen 

and I~uszmaul 1191 [20] and recently modified by B. J. Thorne (first. documented here). 

The essential feature of this model is the treatment of the dynamic fracture process 

in rock as a continuous accrual of damage in tension, where the damage mechanism is 
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at.tribut.cd to microcracking in t.he rock medium. The fundamental assumption of the 

damage model is that the mat.erial is permeated by an array of randomly distributed 

microcracks which grow and interact wit.h one another under tensile loading. 

The compressi,ge response of the material is assumed to be elastic-perfectly-plastic 

and follows the theory of Section 4.2 with the hardening modulus, H’, set to zero. In 

this section, we present the equations governing the tensile response of the material. 

Follcwing the work of Budiansky and O’Connell [21], we write the effective bulk 

modulus of a cracked medium as 

.’ 
;-> ‘C 

I;’ 
-7 
h 

(4.i4) 

In Equation 4.74, the barred quantities represent, degraded or effective quantities 

in the fractured ntcdium. We denote t.he undegraded bulk modulus and Poisson’s ratio 

hy A’ and I’. respectively. The crack density, Cd, represent.s the volume fraction of the 

material occupied by flaws and is given by 

pd = 4F) (11 - i;)(2 - I/) 

16(1 - ii2)[10/1- i/(1 $32/)] * 
(4.75) 

.A \\‘ichull distribution is used to determine the number of flaws per unit volume, N’, 

acti\.e at a given mean volumetric strain! 

‘1’ = kc”‘n (4.i6) 

\vllcre c,. = !% /‘irdci! is the \-olumctric strain and k and 77) are material c0nst.ant.s. . 

TttC noinina 1 fragment. size, n. is given by an expression derived by Grady [22] 

i 
3 t 

(4.X) 

\vhcrc I\‘,c is the fracture toughness of the material, p is t.he material density, c = m 

is the wave speed and i,,,, is the Inaximum posit.ive (tensile) mean volumet.ric strain 

rat c the Inatcrial has ever experienced. The c.rack densit.y is proportional to the number 

of fla\vs per unit volume and t.he nominal fragment. size, 

Cd = pNa3, (4.78) 

where @ is a proportionality constant. Combining Equations 4.76 through 4.78 gives 

an expression for the crack density in terms of the current mean volumetric strain and 

the maximum previous mean volumet.ric strain rate, i,,,, 
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,’ i 

C’ 

C \ i ? 

where we have absorbed the proport.iona1it.y constant, ,L?! into the material constant, k. 

Combining Equations 4.i9 and 4.i5 gives 

5k h-lC 
:! ( ) 

2 
45 

PCi"lln 
q = - (v - i;)(r! - v) 

16(1-Y~)[10v-~(1$3v)) . (4.80) 

Equation 4.80 gives a relation which can be solved for t.he effective Poisson!s ra.t.ion 

of the degraded material. Unfortunately, for given values of Cd and V, the equation is 

a cubic in i/ and the determination of I/ is a nontrivial calculation. .4s a simplification: 

Equation 4.80 has been approximated with a linear: analytic function for I/ in terms of 

I/ and Cd. 

The error associated with using Equation 4.81 instead of Equation 4.80 to deter- 

mine 17 is gcncrally less than 5 percent. Once f/ is known, it is used in Equation 4.74 to 

determine the effective bulk n~otlulus of the material. The error of the bulk ~nodulus 

due to using Equation 3.Sl instead of Equation 4.80 is less than 1 percent. 

It is corivcnicnt to define a tlaniage parnmctcr, /I. where 0 < D < 1 as 

\vilew 

fl(4 = 
(I - 2) 
(I - 2.l$ (4.83) 

This definition of damage follows directly from inspection of Equation 4.74 and results 

in an expression for the total mean st,rcss or pressure as 

p = 3ii(l - 0)~~ . (4.84) 

\Yc ass1~111e that. t.hc deviatoric response of the material is degraded in a manner 

consist.ent with t.hc bulk response by defining a degraded shear modulus, ji such that 

S = 2pe = 
3K( 1 - ‘i;) 

e . 
3(1 + 6) 

(4.85) 

where S is t.he deviat.oric part. of t.he stress and e is the deviat.oric part. of the strain. 

In addit,ion the yield stress in tension is degraded by taking 2’ = (1 - D)2’, where 2’ 

is t,he yield stress in compression. 

59 



Taking the rate of Equations 4.82 through 4.85; 

7 (4.86) 

(4.87) 

(4.88) 

(4.89) 

Sfi(1 - D)K p _ 3K(l - 21/)i) 
fi = (1+-1/)2 Id 3(1+ fi) 

(4.90) 

(4.91) 

where 

a 11 d 

(4.93) 

Equations 4.8i. 4.88: 4.91, and 4.93 represent seven coupled ordinary diffcrcntial 

equations to be integrated over each time step. In PRONTO. we use a simple forward 

diflercncc i!ltegration operator. 

The danlage nlaterial model requires six material constants to characterize the 

niat erial. Young’s IllOdulus~ Poisson’s ratio, the yield stress in compression, and t.he 

fracture t.oughness of the material are all conventional material properties which can 

be obtained from st.andard tjlaterial tests. The remaining two material constants are k 

and 771 for the \,\‘iebull distribution of Equation 4.i6. The parantet.er m relates tensile 

fracture to st.rain rat.e and has been det.errnined by Iiuszmaul [23] t.o have a value of 

6. A definit.ion of the paramet.er, k, has not. been found. Fortunat.ely, the model is not. 

particularly sensitive to t.he value of k, so it is reasonable to define k for the special 

case of a Poisson’s rat.io of zero. For the special case of v = 0 and a constant. strain 

rat.e, the definition of k is exact.ly t.he same as derived by Taylor, et. al. (19) and is given 

by 

k= 

60 

(4.94) 



where OF is the maximum volumetric tensile stress achieired in a test to failure at a 

constant. volumetric strain rate of &. 

If laboratory data for fracture stress versus strain rate are not. available, it is pos- 

sible to generate this data using an expression derived by Kipp, Grady and Chen. [24), 

(4.95) 

where ,Ys is a shape fact.or (1.12 for penny shaped cracks) and c, is the shear wave ve- 

locity of t:le material. Equation 4.95 has been shown to be a reasonable approximation 

for a number of rock types. 

The darnage material model uses five internal state variables: 

II .A >I A G E - damage (Equation 4.82) 

E\‘~IAX - maximum volumetric tensile strain experienced bj 

the material 

FR.-\(:SIZE average fragment diameter (Equation 4.ii 

CR ii IlENS- crack density (Equation 4.75) 

EQFS - equivalent plastic strain 

‘) 

The PROP arra!. for this Inaterial type contains the following entries 

PROP(l) - 

prioP(2) - 
PROI’(3) - 

l’ROP(4) - 

P R 0 I’ ( 5 ) - 

PROP(G) - 

* FROI’(‘i) - 

* PROP@) - 

* PROP(S) - 

* PROP(I0) - 

* PROP(H) - 

\‘oung’s ~lodulus. E 

I’O~SSOII~S Ratio. I/ 

J’icld Stress. (TYci 

171 

k 

Fracture Toughness, Iifc 

I3ulk Xloduius: h’ 

1’ 
?77 - 1 

CONIl= !jk777Kjc/(p~)2 (note: c = m) 

CON A= ;( &&/p~)~‘~ 

4.5 Soils and Crushable Foams Model 

The soils and crushable foams model in PRONTO is a direct descendent. of the 

model developed by Krizg [23]. Reference [25] is an unpublished Sandia National 

Laboratories report and is not readily available. The model was described in detail .. 
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HYDROSTAT 

Figure, 4.8. Pressure Dependc11t j’ield Surface for t.hc Soils and Crushable Foams 

31 at trial ~lotlel 0 -e 

I,\- S\VCIISOII and Ta!.lor i?S] as it was incorporated into a tensile failure model. One 

major difiiculty with the original version of this material model which has confounded 

users is that t hc pressure dcpcndcncc of the yield stress is expressed in terms of J?? 
the second iI\variant of the stress tensor. \I:e have reformulated the model so that the 

yield stress is \r-rittcn directly in terms of the pressure. NOTE: this means that, old 

data must be converted. 

The yield surface assumed is a surface of revolution about the hydrost.at in devia- 

toric stress space as shown in Figure 4.8. In addition, a planar end cap on t.he normally 

open <rid is assumed. The yield stress is specified as a polynomial in pressure, p (pos- 

it ive in compression) 

uyd = a0 $ alp + a#. (4.96) 

The det.ermination of t.he yield st.ress from Equation 4.96 places severe rest.ric.t.ions 

on the admissible vallles of ~0, al, and 02. There are three valid cases as shown in 

Figure 4.9. First., the user may specify a positive ao, and al and a2 equal to zero as 

shown in Figure 4.9a. This gives an elastic-perfectly-plastic deviatoric response, and 

the yield surface is a cylinder oriented along the hydrostat in principal stress space. 

0 
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Second: a conical yield surface (Figure 4.9b j is given by setting a, to zero and entering 

appropriate values of a0 and al. The program checks the users input to determine 

whether a valid (negative) tensile fracture pressure, pjr: results from t.he input data. 

7’hc third cast results when all three constants arc nonzcro and the program detects 

t11al a valid ncgativ(l tensile fai!urc pressure can be derived from the data. This case is 

sho\vn in Figure 4.9~. A valid set of constants for the third case results in a parabola as 

st~oivn in Figure 4.9~. N’e have drawn the descending portion of the curve with a dashed 

lint indicating that the prog;anl does not use that portion of the curve. Instead. when 

t tit7 pressure exceeds 1~‘. the yicld stress is held constant as sho\vn at the maximum 

value. 

‘I‘IIc* 31ivi111 volulllct ric St rilill is u]>tlat Vd as 

1, - 1 

(1. 
= <;.I - ?I/;, 

KIICW ;,. is the \.olunictric part of the strain rate (i,. = f tr cl). 

(4.98) 

‘l‘hcrc arc t llrcc possible rcgimcs of the I’rcssurc-~olrllllctric strain response. Tensile 

fi~illlrc’ is ;tssulllc~tl to occur if tllc pressure bcco~ncs smaller (illore negat ivc) t ban pjr. 

The (IllaIltit~ ~j~ is iriitializcd 10 --I’/ r/1i0 by the program. lf tensile failure is detected? 

t hc pressure is set to -1)~~. Rcrnembcr. pressure is negative *in tension.! Failure b! 

inonotonic t crisile loadin g is slio~vr~ in Figure 4.Ila. As long as c,. < fj,: the pressure 

u-ill rerilain equiil to --p,fr. 

If the volurllct ric strain exceeds <jr, a check is then made to see if 

fu < 6” (4.99) 

\vhcre c,, is the most positive (compressive) volumetric strain previously experienced 

hy the mat.erial, set initially to zero by the program. If Equation 4.99 is satisfied, the 

step is elastic and, 

P 
n+l _ 

- 2’ 
n - IioAcv. (4.100) 
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b) 

P, COMPRESSION 

(4 

P, COMPRESSION 

CT 

/ \ 
P, COMPRESSION 

Figure 4.9. Forms of Valid Yield Surface \Vhich can be Defined for the Soils and 

Crushable Foams RIaterial hlodel 
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CV 

Ev=- In ( P,/P 1; COMPRESSION 

Figure 1.10. Pressure l’crsus \*olumet ric St rain Curve in Terms of a Iiser Defined 

Cur\-c. f(c,.). for the Soils and Crusl~able Foams alaterial hlodel 
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This elastic response is shown in Figure il.1111 

If Equation 4.99 is not satisfied. the volumetric response is along the curve defined 

by J,( C”) and 

This response i 

(4.101) 

(4.102) 

100 is used to de- 

lcrmine p, .wc also c!r;tj: ‘jr along so 1 hat if we ur~loatl froiit the curve. f,( f,.). w will 

fract iire at the appropriate strain lcvcl as sh0w1 in Figure 4.1 Id. 

E\‘Af A s - I1iaxillllllil coIi~prc6sivc ~ol~r~l~c*l ric slrairi c.xl)cric~~ced 

(ill\\.il!:S I)osi t i Ye) 

IC\‘FfIi\(’ - curretit value of volumetric fracture strain (positive 

irt cotttpression) 

El’ - current value of voluutct ric strain (posit.i\vc iri ronipression) 

A’IiM - integer pointing t.0 tlte last. iucrentcnt. in the pressure 

funct iolt where the iuterpo1at.e was found 

‘The f’l{OP arra;; . .I.IS...,I. ,-r\~lf sins t.l~e followirtg entries for this material: 



* 

PROP( 1) 

PROP(Z) 

PROP(3) 

PROP(4) 

PROP( 5) 

PROP(G) 

PROP(T) 

PROP(8) 

2/l 

Bulk hloclulus, A* 

00 

al 

a2 
Funct.ion ID number 

Tension Cut off \‘aluc 

P’ 

4.6 Low Density Foams 

The low density foatus ~iiodcl prcscnted here was developed 1)x Neilsen. Morgan. 

and Krieg [27] and is hased on rcs111ts frown cxperitucntal tests on 101~ density, closed-cell 

polyurct bane foams. These foauts, having densities ranging from 2 to 10 pounds per 

cubic foot. have been ~)rc)poscd for use as energy absorbers in nuclear waste shipping 

cant ainers. Reprcserlt at i1.c responses of closed-cell polyurethane foams for various hy- 

drosi at I(.. uniasial arid I riilXi;tl lill)oratOry t esls irttlicate that the Volulllrt ric response of 

! hc fc:ani is highly* dcl)c~~dcnl 011 load hislorj.. ‘This itnplics t ha1 tJ*j)ical tlc~corlll’ositiorls 

of tot al foanl respot~he itit an intlepeudctll volutllct ric part and a tttean St rcss (pressure) 

clcpcllclt~Il1 dc\.iatoric j)iirt are uot Ivalitl for this class of foaui. 31itIlJ’ “soii and crush- 

iil)lC fOilIll” Illoclels. inclliclill:: 111~ foanl 1110d~~l tlcscrihetl almvv iII Sectiorb 4.5. use such 

tlcccillipos~l ioIls iir~cl 11c,r1c,c arc no1 \.alitl for lo\v clvllsity clowtl-cc*11 I~ol~~ilrctl~aI~c foams. 

‘Pile 1110cl~~l ;!resc~t~te(I l~c*rc% rc*j)rocl\lccs c~xt~crirltctllal lcsl respotiws tllort* i\(.(.Uralcl!. for 

1 llis (.lI1SS Of’ lOill!lS lllilll lll(’ Illc,lll’l iI1 Sect iota 4.:). 

T~IC cx~~er~it~i~~r~l;il lest> on \vllicll 1 his n~otlcl is hased were pcrforrlictl by 1 he (‘ivil 

Lnginecrirtg Research Facility of the liuiversity of Ncu nlexico with the results reported 

in Rcfercricc i27]. Foattl SilIl]~)l(‘S \vcre sIll)jccted 10 static, conipressive stresses during 

t hew t.ests. In 11tost of the ICS~S. air \vas trapped in the closed cells of the foams and 

c0111d 110t cscajje hecausc 111~ sit~~iplcs \vere jacketed with a.11 impervious 1ttaterjal. In 

this cc,listitutivc Illoclcl. 111c lot al foal11 rcsl)orlsc’ is dcco~~iposetl into cont.ributioris frotu 

tljc* skpleton i\Il(l froIii air Iril].)])t*d iri lllc closed cells Of the f0;lIll. The cont.ribution Of 

t hc air t 0 t 11e tot al I’O~III resI)onsc is (l~~~~~*nd~*~~t 011 t l]c application. If t hc foam is used 

iIt a \.rnl.ed applicat ioti wltcrc 1 he air cau escape, t IIC cant rihut,ion of the air is zero and 

1 he foatn and skelct 011 rcst)ouses are ideut ical. If the foam is used in an application 

kr.hcre t.lte air canuot escape, . such as a scaled shipping container, the foam pressure is 

corlsid?red to bc t IIC SIIIII of t.he prcssurc- carried by t hc skeleton and the air pressure. 

1’11at is! 
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where pi and jt),k are t.he mean stress (first invariant of the st.ress tensor divided by 

three) of the foam and skelct.on: respect,ively. The mean st.resses and air pressure are 

itSSlll~~~‘d posit.ive in t.ension. The air pressure is determined from 

PO?' 
p . - 

l2Ir- 1+-f-+ 
(4.108) 

where 3 is the engineering volume strain (first. invariant of the t.otal strains) which is 

pos,iti\.c in t.ension and p. and 4 are model paramet.ers. The parameter po is the initial 

air pressure (usually atmospheric pressure of 14.‘i psi), and q5 is the ratio of the foam 

c1cnsit.y to the polymer densit.y from which t.he foam IS produced. 

Test data indicate that the skclet.on response in any principal stress direction is 

independent of loading in any ot.her principal stress direction. Thus, Poisson’s rat.io 

for the skelct.on is equal to zero. Test dat.a also indicat.e that the yield strengt.h of the 

skclct on in any principal stress direct.ion can be expressed in terms of the engineering 

volume strain and the second illvariant of t.he deviatoric strains with t.he following 

relationship 

(4.109) 

where I I,, is the sccor~cl invariant of the deviatoric strain tensor: -j is the engineering 

vol1lf~lc~ StraiII as ill E(jlliti~C~Il 4.308: ~IIlCl .A, L3, and C’ arc constants determined from 

fit t irlg l1cluation 4.109 to t II(, l;lborator~ data. (‘onstants R and C’ are determined from 

ltj.clrost at ic test dat ;I :llrre II,, is zero. and :t is clct crmir~rci from any test where the 

lO~ldiIlg iS cl(‘SiiitOric. 

Sutncrical itt1pleitlcitt at ion of t 11c 11loclc1 is as follows. Foam stresses and strains 

from the previous little incrc:lilcnl are saved. Al the beginning of the next t.ime incre- 

tncn’.~ t.hc old skeleton st resscs are computed from the old foam st.resses and t.he old air 

prcssurc. The strain rat cs for the new time increment are used to determine new st.rain 

increnlents and trial elastic stress increments for the skeleton. These stress increment,s 

are atltled to the old skeleton stresses to produce ne\v trial stresses for the skeleton. The 

t rial skcle~on st rcsses arc then rot atcd to principal stress clirect.ions and compared with 

t llc ~.iel!1 st rcss clctcrtitirlccl from Equat.ion 4.109. If yield occurs, the skelet.on stresses 

arc set to the yield stress. If yieId does not occur, the trial skelet.on principal stresses 

become the iinal skeleton principal stresses. The final skelet.on stresses are obt,ained 

by rotating t.he final skeleton principal stresses back t.o t,he unrotated configurat,ion. 

Then: t.he final foam st rcsses arc obtained by adding the air pressure contribution for 

the ne\v strain st.ate t.o the new skeleton stresses. 

Input parameters for t.he model are t.he const.ants E,po,$,A,B, and C which are 

defined above. If the foam is used in an application where the air can escape, po should 
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he input as zero. Otherwise, p. is the atmospheric pressure at the beginning of the 

sin1tllatiorl. 

‘I‘hC Low Density F’oan~s model uses one internal stat.e variable: 

PA 1 II - internal air pressure 

‘I‘IIC PROP array cant aills the fqllo\ving entries for this material t.ype: 

PROP(l) - I ~oIII1g~s nhduius, E 
l’ROP(2) - A 
I’ROP(3) - 13 
PROI’( 4) - 6’ 
PROP(:,) - NAIR ( G = air: 1 = no air ) 

PI!OP(G) - 1’0 

I’R 0 P( i) - 0 

4.7 I-Iyclrodynamic Materials 

:I11 of t hc equations of st i1t.e tIcscribed in Chapkr 5 arc used by specifying a 

hvtlrotl~nanlic rnaicrial type. This Inntcrial ?ypc has only volumetric or IIlCXl st.ress 

rcsI)ollsc ailtl 110 clcvii\toric rc’sl)onFV. 
.! 

The prcssurc is calculated in the equation of state 

Ctlitl 1 IIC St I’CSS is SCt ilS 

CT=-+ . (4.110) 

X01 c 111al 1 IIC J)rvssurc is assumctl positi\re in compression in the cquat.ions of state. 

The hydrodynamic material requires t,he user to input. a pressure cutoff which is 

j)osit ivc in compression. 

There arc no int crnal st al c variabics for 1,his makrial t.ype. 

‘1’11~ PROP array cant airls only one cnt,ry for this material: 

PROl’( 1) - Pressure cut.off 

4.8 Elastic-Plastic Hydrodynamic Mz ierial 

The elastic-plastic hydrodynamic matt,erial model is a combination of the elastic- 

plastic combined hardening model described in Section 4.2 and the purely hydrody- 

namic mat.erial model described in Section 4.7. In this material model, we uncouple 
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t 11c \vollitttc~lric* anti cle~~intoric resj)otise. The volutliet ric rcsponsc is tletcrtiiittccl us- 

ing on( of 1!le cqiiat iotIs of state clcfineci in Chapter 5. and t I\(, clcviatoric response is 

(lc1 crtitittctl using t IIC ccltial iotis of Secfiori 4.2. 

1:irst. Ive calculat c the clcviatoric response. This is accotttplished in a tilitritter 

;I ntost iclctkt ical to S(,ction 4.‘2..7. \\‘c calculate a trial clevialoric sf ress 1 

s” = S” - 2116 (A!.111 ) 

wi!vrc~ 6 is t IIC (l(‘\.iaf oriv part of the st r;titl rate. d. anil 3/l i c the 1tsual Lame const itt11. 

\\‘C I tIc*tl I)rocwcl (‘Xil(‘t IF its in ScCf ion 4.2.. 5 \vit 11 an inc.wtttctil a1 cottsisf rticy cottdit ion 

iitltl clctcrttlittc t Iiv iticretticrtt in CC~~li\.i~lCIlt plastic St rain. updafe t hc radius of t lie yieltl 

SIIrfi\C(‘, i\Iltl lt~)Cl;ltV t IIC l)ilckSt rcss. ‘1’11~ satiic radial returrt correction is apJ)licd to t 11~ 

r/c ric7lorir. pilrt of t ltv s1 rvss t vttsor. 

6,;. 1 s,,-, .-. 116 . (4.113) 

Ix>r's - (,(Itti\.iIl(.ttl 1)1;121 ic. ~1 raitt 

l(:\l)II*s - citrrf’tif ri~tlills of J.ivltl siirfacc 

:\l,l’Il:\ 11 - S?: ~‘ot~i]~otictit of l)iiC!iSlrc~SS itI tttirotatccl ccittfi~uratiott 

:I I,f’II~IL’L’ - J’J’ ~~Oltl~~Otl~‘tlt (If l,i1(‘liSl r( x.45 itr tinrot a1vcl c.oltfiguraf iott 

:\ 1,1’11:~:~~1 - 7.7 co~~il)oti(*~tt of l)aclist rcsc; in iitirolatcd cotifiguratiott 

;\l,l’l!~\I2 - sy ~~oII~~~I~~~cII~ of \)acksl rcss it) utlrot atr(l configuration 

..I 1,1’11.-~2~~ !‘z c~c1111~~0tict11 of 1)ackstrcss iti ittirotafrd configuration 

:\ I,l’lIi\3I %S c~0tll~~OIlctll Of l)ilVliStrPSS iit ttnrot at ccl cotifigurat ion 

‘1’11~ l’l<Ol arra? for 1 ltis tttalcrial cotitnins the follo~~:irt~ ctit rics 

l’JlOP( I) - J ‘c~ll!~g’s~~3oclllllts: E 

F’ROI’(‘) - 1 ‘oissot~*s Ratio: II 

PROP(Z) - J’icltl Stress. (Tv,d 

PROP(4) - Ilartlcning niothIhs, E’ 

PROP(5) - /+ 

PROP(G) - pressure cut.off 
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t 3 

5. l3QUATIONS OF STATE 

2‘11~ discussion <jr t IIC hydrodynanlic equations of state incorporated in PROSTO 

fo1101~:. closc~ly t hc cl(~~~clo~~~~~cnt of the theory found in \\‘OSDJ i28] and TOODJ’ I?!): 

5.1 Introduction 

The c(ltlat iorl ior cor~scrva~ion of encrgv equates the increase in internal energ! 

f)cr Illlit \.oIu~llc to the rate at \vhiclt work is.being tlorlc b!’ the stresses and tlte rate 

ill \Vl11Cll lien1 is I)c,irlg ;~tltl~~l. 111 the ahsencc of heal conduction. 

(5.1) 

C--d- :,rdb (5.3) 

(5.2) 

p= -;t.i-a . (5.4) 
d 

p = .f(p.L) (5.6) 

In I’RO.YTO WC use equations of state linear in internal energy of the form 

(5.i) 
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\I’c find it convenient in the numericai implementation t.o work with energy per unit 

volun~e ins!c*ad of energy per unit mass and rewrite Equation .j.P as 

I’ = fl(d + hbw” (5.8) 

\\.l~crc \vc ha\.? clcfincd it new function, f3(~) = y . 

:ZssuIning I hcrc arc no heat sources and the strain rates are constant over the 

si(Bl). IVC can intcgratt Equation 5.5 to obtain the following discrete form of the energy 

C(jUilt ion: 

(5.iO) 

ill‘<' 110 (lv\.ii\lOric Icrltls iI1 ICquatiorl 5.10 (i.c.. S and 6 arc l)oti~ zero). For 1 IIf, claslic 

])lilstiC ll~~tl~~~~l~Ililllli~ Itlntcrinl (so ‘)cctiorl 4.!1). tltr dcviatoric alld \~nlriIllctric response 

ilrC UIlCOll~J~Cd. \\‘c firs1 (I(~te.rlf!illc 111~ tIcI-ialoric rcsporise and calculate t lie dc\.iatoric 

sl rain energ! in i;‘,quali011 .'J.10. Thvn WC proceed with the equation of state calculation. 

'r~l? !)lllk \.isC(J?;t). IJrcssllI'r iI5 rlcfir~ctl in Equation 3.74 COIlti~iIlS in 1iItear and a 

(;llil(1rilt ic part. C’arvful irlsl)c.cliorl of Equation 3.i.1 alon, m with t hc drfinilion of the 

51 iihlf t iIIic iIIcrf.IllcIit ci\.cri h\. EfluatioII 3.il shows that the qlladriltic part of q is 

irltl~~)cndcn~ of t 11~ c.fl’c~ti\.c dilat at ional nlodulus. while the linear parr is not. .4t the 

tilllv \I‘(’ r1111sl calcuiatr F,’ in I:quation .j.lO. WC do not yet know t11r cffcctive moduli 

.for 1 Ire 1 illlc> slf:11 siIlcc it tlv]Jc1id5 on 1 lie rif‘w pressure. To avoid the need to iterate to 

SOl\‘(, ~(JllilliOIlS 5.10 iilld 5.1 1. KC do not include the energy due to the linear term in 

t iItg E(]llil lion rJ.11 in 

f-A1 1’ = 

o .‘,.8. WC can solve for the new pressure 

h(P) A h(P)& 

/. 7 c 
*:. :;z I. :a 2: 

(5.12) 

After calculating the new pressure using Equation 5.12, the energy can be updated 

using Equation .j.l I. 



5.2 Mie-Gruneisen Type Equations of State 

i : . . 

The clesignat.ion h,licSGruneisen equation of st.at.e refers to any equation of state 

which is linear in energy. ‘The most general form is 

p - p){ = l-)(E, - EH) . (5.13) 

\vhere plr and El* iLrC !hc IIugoniot pressure and specific (per unit mass) energy along 

SOIT~C reference path ant! are functions of density only. The Gruneisen ratio, r: is also 

a function of density ouly. The Iiugoniot reference pressure pi is generally defined 

from fits to experimental data. 

The TIugouiot specific energy is related t.o the Hugoniot pressure by 

& = pz 

The Gruneiscn ratio is visually approxinlated as 

I-sing l~quation 5.14 in EC]lliltiOIl 5.13 IcadS t0 

ECj\liit.iOIl 5.1 7 112s 

itlltl 

1’ = ?‘I! 1 -t z [ “(~-I)]+,,.. . 

t hc forrii of Equat.ion 5.7: 

(5.14) 

(5.15) 

(5.16) 

(5X) 

(5.18) 

h(P) = PH (1 + ?) ! (5.19) 

f2(P) = rP 7 (5.20) 

p= f ( ) -1 =A,. 
PO 

(5.21) 

The most con:mon form for Equation 5.16 is to use )I1 = -1 and all ot.her h; = 0 which 

gives 

r=re 
OP * 

(5.22) 

All of tile Mie-Grcneisen equation of states in PRONTO use the form given by Equa- 

tion 5.22. 
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5.2.1 Linear li, - U, Hugoniot Form 

A co11~1110ri fit to Hugoniot data is given hj 

PO471 
PH = 

p-=-q 

Inhere co and s colne from the linear shock velocity-particle velocity 

Ii, = co -t .sli, 

Equation 5.23 follows direct l\- from the rclat.ions 

a I1 d 

We see that there is a limi ting compression given by the denominator of Equat.ion 5.23 

or 

(5.23) 

(7, fit 

(5.24) 

(5.25) 

(5.X) 

1 
11/i,*! = - 

s 
(5.37) 

(5.28) 

Also, at ~1 = -i there is a tensile minimum and thereafter: negative sound speeds are 

calculated for the material. Since Equation 5.23 is intended for use in compression. 

caution is atl\.iscd if the model is used ir: response regimes inhere large tensions are 

csprctd 

I’or this forIn of the equation of st.ate, we see t.hat. 

a Ild 

rope 
J':;(p) = -7 =I I 

(5.39) 

(5.30) 

5.2.2 Power Series Hugoniot Form 

Another common form for the Hugoniot is to express t.he reference pressure, pH, 

in a power series in 7, 
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In order t.o match % at 77 = 0 it is necessary that 

h’o = pot; (5.32) 

where Ii0 is the adiabatic bulk modulus at zero pressure and room temperature, and 

co is the bulk sound speed. 

For this Hugoniot form, the equation of state is defined by 

and 

f1(p) = KJ~(1 + KY7 + K2v2) 

( "1 
1 - + (5.33) 

f3(p) = y = r (5.34) 

where \re have rest.rict.ed ourselves to using only t.hree t.erms in t.he polynomial in 

Equat.ion 5.31. 

5.2.3 Ideal Gas Equation of State 

The itlral gas equation of state is given b3 

p = (7’ - l)pE, . 

\vhcrc 3 is a rnatcrial parameter. 

(5.35) 

Hence! we see that 

h(P) = 0 (5.36) 

ilIl( 1 

h(P) = (7 - 1) * (5.37) 

The initial sound speed in the gas, cg, must be defined by the user. The init.ial pressure 

and specific internal energy per unit. mass are 

PoCi 
PO = - 

Y 
(5.38) 

The init.ial pressure and energy per unit. volume 

2 

EC, = pE,, = Co 
Y(Y - 1) 

(5.39) 

(5.40) 

are init.ialized inside the code. 
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5.2.4 JWL High Explosive Equation of State 

The Jones-jl’ilkins-Lee or JWL equat.ion of state [30] provides t.he pressure gener- 

at cd by the release of chemical energy in an explosive. In PRONTO it is implemented 

in a form which is usually referred to as a programmed burn. A programmed burn 

means that the reaction and initiation of the explosive is not determined by the shock in 

t.hc material, rather the initiation time is determined by a Huygens construction using 

the detonation wave speed and the distance of the material point from the detonation 

point(s). 

The J\I!I, equation of state is generally written as 

where 11! B, Rt, R2, ci: and E,,, are mat.erial constants. 1Not.e t.hat. Equation 5.41 is 

\rrit t.en in terms of energy per mass which is the usual form found in the literature. 

Again, ivc chose to ivritc our equations of st.at.e in terms of energy per unit volume 

which rcsuli s in 

f, ( p ) = .4 ( $) c 1 - PI9 + B ] ( - $) kR2%) (5.42) 

a II tl 

h(P) = 2 * (5.43) 

The progratnmcd burn requires the initial calculat.ion of the arrival of the detonation 

Lvave at. a iiiat~c~riai point. If there is only one dct.onat.ion point denoted by zd, and if the 

location of the material point is denoted by z,,, then the detonat.ion time is determined 

t =i~d-h/ 
d 

cd 
(5.44) 

where cd is the det.cnation wave speed (a mat.erial property supplied by t.he user) and 

the symbol j . 1 indicat.es t.he euclidcan norm of a vector. Clearly, if there are multiple 

dctonat.ion point.s, then Equation 5.44 must be applied for each mat.erial point for each 

dctonat.ion point, and t.he arrival t.imc is t.he minimum. 

In order to spread the burn wave over several elements, a burn fraction F is 

comput.ed as 

F = min 1, 
(t - td)Cd 

BJ 
(5.45) 

where B, is a constant, which controls the width of the burn wave (defaulted to 2.5 in 

t,he code) and 1 is the characterist,ic length of the element which is calculated internally 
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in the code as the square root of the area of the element. If the time 1 is less than fd . 

the pressure is zero in the explosive. Otherwise. the pressure is given h) 

(5.46) 

‘#hen t < td the detonation ~vavc speed is used as the sound speed in the material. 

After t,hc det.onation \r.ave !las arrived: the sound speed is calculated internally from 

tllv hypovlastic stress ralcs alltl strain rates just as for all other matcrialc. 

This forrli of 1 II? cq~ialio~~ of state requires that the intern4 energy per unit volume 

1,~ initialized to account for the chemical energy in the explosive. ParaIIleters for a wide 

v;\ricty of c?sl)losives have bcf>Il t~~~Ulitt~t1 I)? Dobratz i31 j. 



6. CONTACT SURFACES 

PRO?;TO currently supports two types of contact surface boundary c.onditions: a 

tlefoririable surface against a rigid plane. and t\vo distinct deformable surfaces against 

each other. The first option requires a far simpler procedure since the c0nstraint.s on 

c-tic11 110tlc are conipletcly urlcoupletl. 

Clout act is treated as a kinematic const.raint by PRONTO. This means that the 

fiu al product tit’ the contact algorit hnl is to Iuodify the accelerations of the nodes along 

these surfac,es such that t hc kinelllatic constraints are satisfied. 

I’R~STO : 1 \up )ort s friction for hot h cant act surface oplions. Either a simple 

(.‘o~I~oIIII) frict iotl rrIotlc1 or a ~~locit~~-dcl)~~~dcrlt friction model may be selected. 

0.1 Def’orlil;l~,Ie-to-Iiigid S~irface CoIltact 

‘l‘hc rigiti surface, of)1 ioii iit I’I~O.S~I‘O ilttj)oscs the kinelnatic COIIS~ raints of an 

\111!.iclrliii:: j)lilIl(’ 011 ii ll,c.r-~l)c,c.ific’tl surface of 111e defor~i~nl~lc body. The plane is 

tkfiI!c*t! 1)). it ])C,iIll 2 iillti t lIc% out\Varcl Itnit IlOrIIliil n. The deformable surface cau 

i)f* tr.c~;111~(1 ;I> siili1)1!. ;I bfsl r)i Iirii(jtl~~ Iioclcs. Tlic priliiary kinematic cnndilion is that 

t II<, ..i(~f()rtil;\l)I(~ IIO(I(‘> tlla\. IIO~ I)CII~‘I rat c t 11(* rigid pla,lc. III addition. the motion of 

~i~~l‘~irit~;~l~l~~ IlO(l~‘~ i!lOll~ III0 i’l;\IlC Illil)’ I)(’ rest rictcd subject lo a \.~locit!.-dcy)cnclcnt 

f’ricl ioii Iii\\‘. 

6.1.1 Normal C~onstraint 

\\‘(a I)c*K:iil 1)). iritc~gralirig the Itlotion of the deformable nodes without regard to 

t tic ki11c111a1ic c011St railits rccjuiretl by the rigid surface. For each node. we calculate a 

j)rcaclicl ctl kitlcl~rat ic st iitC as follO\VS: 

f * 
a = - (ix) 

II? 

+=vsAl; (6.2) 

i==x+nr+ (6.3) 

In the above e(fuations, f is t.he residual force vect,or (sum of ext.ernai forces minus 

sum of internal forces): m is the nodal mass, v is the current velocit.y, x is the current 

position. and At is t,hc t.ime increment,. The predict,ed kinematic quant.ities are denoted 
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1)). a supcr]med hat. The predicted velocities are tcnlporarily stored in the residual 

force array. 

\C’C 110~ calculate the depth of penetration 6 of each node into the plane as given 

helo\v. This depth is zero for nodes which are not in contact. 

6 = rnax( n.( 2 - jl): 0) 

l‘hc Illi\gIlitude of t11c force \vhich Inust be applied to enforce the kinematic constraint, 

i.c.. \vhicll \vill CilllCCl t llr, pcnct ration, is given h) 

.f,, = g * (6.5) 

This force nlust he apl)licd in the direction of n. Applying this correction to Equa- 

t ion 6.1 and cliluinat ing t hc nodal niass. we can express the new acceleration in the 

ii )~cIlc~~ of I 
. . 

lrict ioIl as r 

(6.6) 

^ 
a = a t u ,, I1 . (6.7) 

6.1 .2 Friction 

Frict iol\ resist 5 taIlg(‘I\t ii11 Iltot ion of deformable nodes cant acting the rigid plane. 

‘J‘IIc I)r(*(lic-t ctl I;III~C>JI~ ial \-c~lc)cit~. of a node is orthogonal to the outward normal and: 

1 li~.*r(‘forc. i5 c~sj)rc~sSc~tl I)!. 

v, -= + - (n .C)n . (G.8) 

T!ic wbovc ~clocit y is tlcc0111poscd irlt o a magnit vde and unit direct ion vector as follows: 

s = >. (6.10) 
1’3 

‘1‘11~ force \vllicll Illust lit, applied to cancel t.he tangential ve1ocit.y of a node is t.hen 

gi\TJl II! 
j3=-E$ (6.11) 

where the minus sign above reflects t.hat this force would be applied in the direction of 

s. but opposing the ~ilotion. 

PRONTO current 1~ support,s t hrce options for frict.ion: no frict.ion, Coulomb fric- 

t ion with a constant coefficient. of frict.ion, or the velocity-dependent. frict.ion law found 

in IiONDO II [32]. Tl le coefficient of friction can be expressed bp 
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where /lo and I!~, are the low- and high-velocity friction coefficients, respectively, and 

-; is a decal constant. Clearly, if 7 equals zero, the coefficient. of friction is the constant 

1’0. Futhermorc! if ilo is also equal to zero, t,he surface will be frictionless. 

The magnitude of t,hc tangential force exerted by the plane on a node cannot. 

cxcwtl t hc rtlaximu~rl friction force. This constraint. is expressed as 

Substituting Equations 6.5, 6.6, and 6.11 into the above, then elirninat.ing the nodal 

IllilSS yields 

I’d 
0, = - 7 riiin(jra,, 

11’3 j 
k4). (6.14) 

‘1‘11~ total accclcration of the node is then given by 

(6.15) 

0.2 Deformable-to-Deformable Surface Contact 

‘I‘he fllrl(larllcnt al condition \~llich must be satisfied bct\vccrl t\vo cant act surfaces 

is t ;Iiii oII( sllrfacc Illil!’ 1lOt f)crictratc in10 the other. The algorit.hInic challenge is 

to fill(l t11e set of nodal forces \vhic11 \rill maintain kinematic corupliartcc. The classic 

cliflic~l!l\’ of cor~tilct iilgOrit!ll~~S is thilt elal)orate and exhaustive schemes t0 maintain 

Strict COlll~~lii~llC~~ ilT( prohiI)iti\-cl? eslwI\sive IO i~~lple~nent and to csecute. Fyrther- 

Il)or(J. l)ecau.<e 1 hf. sllrfacc> is c1iscrf.t izcd for t Ire finit c clcIncnt IlIe hod. it is virt uall) 

iI~~;~osziblc to ~IOS~* aIi algorit 11111 w1tich al\vays yields unique and Ill~i~IlillgfUl results. 

The corit act algorit hni in PRO?TO is designed to handle very large deformations 

i;Iltl Iiigli illil)acl ?,c+locitics. ‘Tllc gOi of tlic cont.act algorithm is that it function prop- 

(.,rly t0 t IlC Cil])ill~ilil~’ liliiits of i\ 1,;1~:rilIlgi~~l IllCSh. The sample problerus in (Ihapter 9 

illustrate a fair]!. rcprescrltativc~ but 1)~. no means exhaustive, range of applicability of 

t hc PRONTO contart surfaces. 

PRO.YTO uses a partitioned kinematic approach to contact. The part it ioning 

can be adjusled lo give a strict Illaster-slave treatment or to balance the master-slave 

rclal ionsliip bet \5’ccn the two surfaces. In any case, the constraint forces conserve 

1110J11C11t11111. 

The cant act algorithm is pcrfornled in two passes; first with one surface as the 

Illaster, t.licr~ u~iih the other surface as the master. One of these passes will be skipped 

if a strict master-slave treatment. is request,ed. The following sections describe just one 

such pass. 
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i 0.2.1 Surface Topology 

A surface in PRONTO must. he continuous and simply-connect.ed. It may be eit.her 

an open surface with a continuous, simoly-connected perimeter or a closed surface, such 

as the surface of a sphere. The ‘inside’ of the surface to PRONTO is where the material 

lies; it is assumed that there is no material on the ‘outside‘ of the surface. In order for 

a surface r~ocle to forIn a valid connection, all adjoining faces must have material on 

the same side. 

I’ROKTO carefully* checks the topology of contact. surfaces during init.ialization. 

It will print an appropriatt error ~nessage(s) if the surface is either multiply connect.ed 

or c1iscor1tirt~1o11.s. If t 1 IC surface is found to bc valid, PRONTO will build t.he data 

St rtlct 11rcs Lv11ich tlvscrihe t hc t apology of the surface as drscribed below. 

'rhe node list data structure? NODJCT(NNODES), uniquely contains the nodes which 

appear on a gi\rerl surface. Most nodal data within PRONTO’s contact algorithm are 

referenced by surface riodr index! rat her than global node index. From this perspect.iYe, 

the node list data structure contains the global node index of each surface node. 

'I‘hc 710d(11j(ic( mop data structure, KNRJCT(MAXFAC,NNODES).corlt ains the index of 

each face connectctl to eacl~ surface node. 13~ con\‘ention. t IIC faces circulate clockwise 

around the notlc ivllilc looking at. the out.sidc of the surface. This data structure is 

Ill~ldC rcct i\llglll;lr. I)itsrd 011 t h(* maximu nunlbcr of faces conllectctl t.o any node on 

the surface: for cfficitxllc!.. ‘I’hc ~RCC co~nlw data st.ruct urc. KNTFACCNNODES) ? contains 

the nllmt)er of faces act uall). connected t.o each surface notic. A row of the nodal 

face nlap about. rroclc I, which is cont.ained within KNRJCT( 1 : KNTFAC( I> ,NNODES), 
represents a closed loop (circular list.) of faces for an int.erior node, or an open loop 

(st.raight. list ) of f aces ftor a perinlet.cr node. 

0.2.2 Surface Geometry 

PRONTO recalculates t.he geometry of all c.ontact surfaces at, each time step. A 

predict.ed configuration is computed by integrating the motion without .regard t.o t.he 

kinematic c0nst.raint.s required by the contact surfaces. For each node we calculate: 

f 
$=- 

m 
(6.16) 
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PROS’PC) IISC~ lhc 0171wq~ .SII~*~UCI nomal to rcsolvc cant act at corners. This 

\.cctor quantit\. is tlcriv~d for each surface node front the 1I1eu1 facr normals connected 

to 1 hat nocl~. k‘irsl. t IIC mca~t face normal of each face is calculaletl and rlormalizcd as 

follo\\‘s. 

N, = (x2 -7 xg -- x1 -- x4) x (x2 ix4 - x1 - XJ) (6.19) 

0.2.3 Surfr7ce Tracking 

‘I‘hf~ 1 r;lc-kiIl~ iLlgO~~thIIl truly go\-crr?s lhr cost /l~c~Jlcfil of t11c cant act surface ca- 

paI)ilit~~ in f’II(.)X’I‘O. ‘1’1 IC ar~~o~lrlt of gcomet ric detail t.hnt t,hc tracking a.lgorit.hm can 

rv:;ol\.c d~tcr~~~irlcs 11)~ range of applicability of the cant act. surfaces. On t.he other hand, 

cxshaustive checks of every slave node against every master face during every t.ime st.ep 

\j.ill aI\vit\ls 1:~ prohibit ivcl~. cxpcns~~c, and generally unwarranted. The tracking algo- 

rit 11111~ t hcrcforc. is ar. arca whrrc compromises must. be made, but. where cleverness 

\vill ]liiy Off. 

PRONTO tracks the nearest master node for each slave node. It. is important. to 

undcrstancl that. ix, t,his context the ‘nearness’ of a node is measured in terms of the 
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surficial (along the surface) distance, rather than t,he spaCal (straight line) distance. 

The ncnrcsf TICIC/C: therefore: is defined as the nearest facial node to the nearest point 

\vit.hin the nearest. face. The preciseness of this definition is crucial to resolving sharp 

corners, as illust,rated in Figure 6.1. 

Spat.ially Nearest Master Xode - 

A 
-a - Slave I?ode 

- 

L-1 - Surficially Xcarest Master Node 

Figure 6.1. Surficial \ ‘ersus Spatial Dist.ance 

To strcanlline the tracking algorithm in PRONTO, we assume that the nearest 

III;IS~V~ rrotlc IO a given slave node at one time step will be in t.he vicinit.y of the nearest 

Illastcr rioclc at t 11(: ricxt ti~llf’ step. This assumption allows us to update t.hc tracking 

SCllc‘IIl(* by sirll])ly ScaitrCllirlg for a local minimum in tile vicinity of the previous13 

~lrarcst tllasl(~r rlodc. ‘I‘hu::. at each t inlc step: WC start at the previous]! nearest, node 

ar~tl scbarch \.i;t the ~lotinl face JJ~ZL~ for the nearest point and face among its connected 

f aces. \L’C tll(~Il find tllcs Ilf’\\’ JlC’ilrCSt liiastcr node. If the nearest node changes? we 

IlI)(lilt C ;lIltl COIlt ililic~ t IlC WilrCll proc(‘ss, until a stable ncarcst node is attained. 

\\‘c illit ializcb 1 IIC t r;tckiIlg schcnle for each slave node S by simply finding the 

S])ilt iill]\’ Jlf:ilrc’St JlliiSt Cr IIO(~~’ 1, ~vllich has t hc nlininlun~ dist ante ci’, defined bl 

t1; = (X/ - x5) * (XI - x.9) . (6.21) 

1’11~ tracking algorit hnl could fail if the local minimum scheme does not find the 

globai Illinin1uJn. This failure is extremely unlikely to occur (in fact, ii. has never been 

ol)scrvctl): I~causc incrc1ncnt al geornct ric changes over a t.ime st.ep are forced t’o be 

SJllilll 1)~ f 11~ c.xl)licit integration scheme. The sit.uation could be remedied, in any case, 

l,~,* sirllply rest art irlg t hc calculat.ion (Appendix A, command 4 and 5) at an appropriate 

lirrlc. I’l~OX’I‘O rciIlitializcs the tracking data when it reads a restart file, which forces 

an exhaustive search for the nearest mast.er node via Equation 6.21. 

III addition to the pathological cases described above, the tracking algorit.hm in 

PRONTO does not yet support a surface cont.act.ing itself. This capability would be 

useful for buckling shells which fold upon themselves. The problem in this instance is 

t.hat. the t.racking sc.heme will always find that each node is contacting itself. Presently, 

the only way to handle this situation is to divide the surface at the crease points. The 
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best approach is to run the caidatiot~ wit.h fairly frequent restart dumps (Appendix 

.-I. contn~and 5). identify a rest.art state which occurs after the surface has buckled, but. 

l)cforc cant act. then restart from this stat.e (Appendix A: command 4) with the proper 

co~~tact surfaces inserted. The greatest difficulty with this technique is t.hat, it. requires 

Illanipulation ot’ the GENESIS mesh file [Z]. 

The success of the tracking scheme depends most heaIrily on determining the 

Jlcarc-sf poir1t OJI an CleJllcJlt face to a given slave node. This amounts to a nonlinear 

corist rained JniJliIIlizi~t ion problem. The vect.or from a slave node S to a point on an 

caleliicnt face (represented by face nodes 1 --+ 4 is expressed in terms of t.he isoparamet.ric 

faC(’ COOr(liJlilttS it5 follo\VS. 

d = t t <u + I/V + tllw (6.22) 

t = fc AXI + x2 -+x3+x‘+xs (6.23) 

u = ;(--xJ +xz+x~-x.j) (6.24) 

v x.z ;( --x, - x2 + x3 $ xq) (6.25) 

w Y- (-x1 - x2 i- x3 - xq ) (6.26) 

\Z’rt seek i‘ tint1 ‘1 \vlIicll JlliniIr\izc d . d subject to tllc: follo\ving constraints. 

-i’ c <i;: (6.27) I 
J / -- 2 2 71 ‘+; (6.28) 

SiIrcc l:cp”tioJJ fi.22 is hilincar. the inner product of d is fourth-order. Since t.he 

iI1Ji.r product is also positive dcfnitc. it cannot. have a maximun1. Therefore, t.he 

fyJlcxrni (‘; ‘(‘ has t 1~0 IlliiiiJiia l)(lt \vccn a saddle point. The most rapidly converging 

tc~l~niquc ,‘or ~ionliJi(~iir Irliriilliizatiori is Kewton’s nicthod. Ilowcver, Kewt.on’s Jilet.hod 

Ii&S t Iv0 prol)leIiis in rCgiirtl to our application. First: it requires a good initial est.in1at.e 

to iii:oitl t lie satltfIc point. Yccond, . it. does not enforce the constraints. 

The tccllnique ir1lplementcd in PRONTO for finding t.he nearest. point generat.es 

it good init ial cstirllatc \vhich properly accounts for .the constraints. n’ewt,on’s method 

is t hen applied to irlrpro\.e this estirnat.e. PRONTCI st.art,s by finding t.he constrained 

lJliIliJJlllJ11~ iA’,> the nearest point on the perimeter. The nearest point on each edge is 

given 113 the follo~ving cquiit ions, iespectivcly. 

(6.29) 

(6.30) 
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j3 = III~S (--$!min (: (6.31 

(6.32) 

rcspec tive dis- 

(6.33) 

(6.34) 

(6.35) 

t ’ II 
&) = .-I- 

u-u 
(6.31) 

‘1‘11~ IIvarc:s! point !o vac11 edge triangle ran 1)~ det erIniI:ed from Equations 6.9-5.33 

aIld T:qu;\tiorIs (i.:<T-6.38. sIIbjcct to 110th t,hc cxterna; constraints of the edge and the 

iIltrrIlit1 coilst r;iirrtS of the t riilIlgle. The results are as fOllO\VS. 

(6.39) 

(6.40) 

(6.42) 
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(6.48) 

(6.50) 

--d . (II -- tjw) 
= 

-d (vi[w) I 
(G.55) 

‘I’l~rec .\‘(~\f.ton iterations arc periornretl in PRONTO. 1‘1 lis assures approximately three 

tligit prrclsioil ii1 dct~rIi;iiliiig thC il?iireSt point. Note that if the external constraint (in 

I.:quat ions ci.:3!I--C;.-12 t 1~1s t 0 IIC enforced. no unconstrained minimum exists; therefore: 

t hc Kc\vton iterations arc ignored. 
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0.2.4 Determination of Contact 

PRONTO’s approach to determining contact is based on the ,premise that a slave 

node usually contacts the nearest face as defined in the previous section. PRONTO 

requires two conditions for contact: the slave node must be penelding and &hin a 

master face. The node is penetrating if and only if it projects to the inside of the face 

at the nearest point. The condition is expressed as follows: 

d. (U + 7~) x (v t tw) < 0 (6:56) 

The node is within the face if and only if it projects normal to the face at the nearest 

point. This strictly requires that. the right-hand side of Equation 6.55 vanish. In 

practice, we determine if the node projects within t and 7, respectively, as follows: 

d . (u + VW) -~ 
~+(u+?)w).(u+~w) <f+c 

d . (v + (w) 
I?/ t - 

(v + {w) -(v+(w) < i + c 

where c is a small dimensionless number; we use c = 0.001. 

(6.57 

(6.58 

The ideal condit.ion for determining contact. is that, the slave node is penetrating 

and projects within exactly one mast.er face. Unfortunately, this definition leads to 

sc\*cral alnbiguous cases because the surface normal is not continuous. One must. 

iInposc furt.hcr contlit ions in order t.0 rcsolvc t.hcse ambiguit.ies. 

Since t.hc surface norInd is not. continuous across element faces, the surface gener- 

ally forms a crease at an edge. When the angle between two faces becomes significant, 

wc refer to the edge as a corner. There are two general cases, inside and outside corners, 

which pose distinct.!y different problems for the contact a.lgorithm. 

When two adjacent. faces form an inside corner, there is crevice where a slave 

node could be penetrating the surface, but not project normal to either face. This 

case is illustrat.ed in Figure 6.2. PRONTO’s solution to this ambiguity is to relax the 

applicable Condition 6.57 or 6.58 for the nearest face if the slave node is penetrating 

the adjacent face. This situation does not apply to a free perimeter edge since there is 

no adjacent fade. 

In the case of an outside corner, there is an overlap where a slave node could be 

contactming either face, as illustrated in Figure 6.3. In this instance, the average surface 

normal defined in Section 6.2.2 is used to resolve the ambiguity. If the average surface 

normal of the slave node is more strongly opposed to the adjacent face than to the 

nearest face, the adjacent face has priority for contact. The adjacent face, however, 
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Mast.er Surface 

Figure 6.2. Inside Corner 

must further sat.isfy Condit.ions 6.56-6.58 t,o be in contact.. To perform the opposition 

ksts, we must. first normalize t,he projection vect.or t.o each face as follows: 

kdX-2 (6.59) 

d 
713 = - 

c; 
(6.60) 

\Ve then drt.errninc if the average surface normal of t.he slave node: x1.5: is snore opposed 

to the adjacent face normal, m A: than t.he nearest face normal, rn.\i. as follows: 

11s ’ mA < ns ’ nlh7 (6.61) 

Figure 6.3. Out,sicle Corner 

The logic t.hat PRONTO f 11 o ows to determine contact once it has identified the 

nearest. face is summarized in Figure 6.4. In this figure, precedent and antecedent refer 

t,o faces adjacent, t,o the nearest face wit.hin t.he nodal face map (Section 6.2.1) about 

the nearest. node. Note that there are only three basic questions. This logic is so simple 

that it can be vectorizzd efficiently. 



I-i;Ge,,,iiat:ng,, j I,o . 
uild withln prccedc,lt fdcc. 

opposed 

ris ~13~ 110~1~ penetrating UU~ within 1 

I ( 01‘ pcnct rat ing htljaccnt fact) 
I 

ncarcst fact? 
yes 

Figure 6.4. contact Determination Logic 

t 
Clont act. 
.4ntecedent 
Face 

‘ace? ( 

1 
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0.2.5 Contact Forces 

\\‘e us<’ a partit,ioned kinematic approCLL -ch t.o enforce compliance between two con- 

tact surfaces. This means that each surface acts as a master for a fraction of each t.imc 

step and as a slave for tl~c rcillaindcr. 

Tl~c first task in rest orin g compliance is to calcu1at.e the penct ration forces inlposet! 

011 t h(l nlast.er surface 1,~. the slave surface. We define t,hese forces as a fraction of the 

f’orccs \~11ich ~~oulcl be imposed by the slave nodes if the master surfac(x IYBS rigid. This 

fraction is t.he partition factor $, which represents the fract ioIl of f?iiCll tinlc st,ep for 

\vhich these surfaces act. as master and slave, respectively. Their roles arc reversed for 

the reniaiIiing fraction ( 1 - 3). 

(6 62) 

\Vhcrc 771s is t hC IIli\SS Of tllC slave notlc. T11cb I)enct rat ioIl clrpt 11. 6, and vcct.or, n, are 

tlcfiricatl in I;Iq1iati9Irs (i.5!)--6.60. 

\VlIcrc a,,.~. and arrl t hru a,.,4 arc t hc accclcrat ion responses of the slave node and master 

notlcs. rvsi)wt i\.el!.. 

15juat ion 6.63 couples t hc response of indi~itlual master nodes. The principle of 

l’irt lldl \t~Ork iS il~~plie‘d t0 o rrcncra t c t 1,~ follo\ving equations \vhich define t.he accelera- 

t ioIls of t Ilc Illaster nudrs in rcsponsc to the penetration forces. 

\vhcrc the summntion is over all slave nodes S in contact, wit.17 mast.er node I. 

The abo\:e expression represents a set, of uncoupled equat.ions; one for each master 

node. The mass and force contribut.ions to the above assembly for a given slave node 
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are as follows: 

n1 1 s _- (f - ()( f - 7j+7s (6.65) 

*lzs = ($ + ()(i - ?I)‘% (6.66) 

11’ 3 .q = (f t ()( \ t q)*ls (6.6i) 

711 4-C = (; - ()(; -I- 77)v (6.68) 

fl, _’ (f - ocf -- 9% (6.69) 

f2, = (2 ?- <I(; - V)fP (6.70) 

f:,, I- (; 3 ,C )( f + V)fP (G.il) 

fds =: ( ; - [)( f -t 7])f,, (6.E) 

After assenlblirlg and solvil~g Ecjuations 6.61 for the master accelerations, each 

slave response is int.erpolated via Equation 6.63. Note that this slave response restricts 

the motion induced by t.he penet.ration force given in Equation 6.62. Therefore, the 

acceleration c-orrcctiorl for a slave ~lodc is given by 

fi, 
a,, ,s = a:,.< - --- . 

*? s 

(6.i3) 

lri t lit abscncc of friction, t ht. corrclctcd nodal accc~lcratiorl to Equation 6.16 for both 

~iiast er a11d slave nod(~s then is given by 

^ 
a = a -{- a,, . (6.74) 

0.2.6 Friction 

Frict.ion resisl s t hc relat.ivc t,nngc~ntial mot.ion of the contacting slave nodes. The 

relative predicted tangcnt.ial velocity of t.hc sla.ve node with respect to the master 

surface is calculated as follows: 

V ,, -= v r - (n.v,)n (6.i6) 

The above velocity is decomposed into a Inagnit ude and unit. direction vector as follows: 

( 

-. ‘.., 
.i L_.i 



V, s _. ..- (6.B) 
l!, 

As with t.lrc pcnct ratioI\ force 6.62, we tlcfi~ie t,hc tangential contact force as a 

fraction of tb,e force \vliich Illust be applied to the slave node t.0 cancel its relative 

tartgcntial velocity. ‘This forccx is giver) hj 

(ci.i!J) 

l’iIO.ST!) currently suj,lborts t 11,cc options for friction: no frict iori, Coulomb fric- 

t ion \vlt 11 a corlst ant cocfficicI1t of fric*t,ion. or t.hc vclocit.‘-dcl)cndont friction ,law fourld 

in HOSI~O 11 i32j. ‘1’11~ cocfficicn! of frict iort can he cxpresscd 11) 

1’ 7-T /I- -+- (I/() - //m )c- “‘A (6.80) 

\viicrc /lo ant1 I/-, arc t hc tow- ;III~ lligh-velocit)* friction coefticicnt s. rcspectivelv, and 

7 it; il ClCCil\ COllSt ;tllt . (‘l(‘i rl!., if 7 (‘(1llillS 7.(*ro! t.hc cocft;cicnt of friction is t hc corist ant 

I((). 1’111 II(‘rItlorc’. if //I, is itIS f‘(1ll;il I0 z(‘ro. 1 li(s surfa(.c will 1)~ frictic,rilC~ss. 

‘J‘lrc Ill;rglrit 11(1t* of t11~ f;~llg(~1ltial force* cBxc.rtc.(l 1)~ the master surface OII a SI~VP 

Iltltltt c‘;~rll~c~t (‘sc.c'c‘cl 1 II<- illiISilltlllll fric.tioIl force. ‘I’liis const rain1 is exprcsscd as 

(6.81 ) 

irlg t IIC nodal mass yields 

(6.13) 

Applying this f0rc.c to t 11~ sli\\.(’ node antI halancing forces to the master nodes: 

t 11cn dividing by t !I(% aI)l)roprialc 110dal Iliass yic*ltls the follo\rir~F; cxj)ressions for t 11c 

1 illlp,:c~rl( iill il(‘C(‘lCrilt ioIls IO 1 ll(‘S(‘ rc*sl)cc.l ivc, IlOtl(‘S. 



Final!y, by adding the above tangential accelerations to Equation 6.74, the cor- 

rected total acceleration of each contac! node is expressed in general form for both 

master and slave nodes by 

a=ii+a,+a, (6.89) 
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7. BOUNDARY CONDITIONS 

PRONTO supports several t,ypes of boundary conditions. In this chapter, we 

describe how t.hesc are implemented in the program. In Chapter 8, we discuss t.he 

initialization and time-st.cpping algorithm including when these various boundary con- 

ditions arc applied. 

7.1 Kinematic Boundary Conditions 

‘1’1~~ kirrclllatic boundary conditions dcscribed below arc all accomplished by al- 

tering t.hc accelerations of the nodal points. All of the kin,omat.ic boundary condit.ions 

il])[)Iy t0 IlOda,i point Sets. 

Note: \‘clocity or accrlcration const 

tlisplacem~:it col;strainl. 

7.1.2 Prescribed Velocity Constraint 

ing t.he acceleration of each 

cscribcd on a node will override a no 

.A prcscril)ed vclocit? const.raint is accomplished by alt.ering the nodal point accel- 

cr;ttiorl such t.hat \vllcn the ;iccelerat;ons are integrated once, they provide the proper 

value of t.hc nodaI velocity. The nodal value of accelerat.ion for t.he time step is c.alcu- 

lat.Cd by the prograIl ilS 

(11 f-+Af - ‘1:t ) 
(If = - 

Af. * 
(7.1) 

‘i’f~c \rclocitJr at t.ltc crltl of t.he tirnc st.ep is computed by 

l,!+Af = s f(f + Ai) (7.2) 

where s is the scale fact.or and f(l) is the hist,ory function defined by the user. In 

Equation 7.1, the value of velocity at. t.he beginning of the time increment, Q, is the 

value computed by Equat.ion 7.3 at. the previous iiille incremknt.. 

Note: A prescribed accelerat,ion constraint on a node will override a prescribed 

velocity const,raint. 
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7.1.3 Prescribed Acceleration Constraint 

A prescribed acceleration constraint is applied by the program by setting the nodal 

acceleration during the time increment to the value given by 

at L s f(l) (7.3) 

where s is the scale factor and f(l) is the history function defined by the user. 

Note: A prescribed acceleration constraint will override any other kinematic con- 

straint on the same node. 

7 .2 Traction Boundary Conditions 

Thy boundary conditions described below apply external forces to selected nodes. 

The pressure and nonreflect.ing boundary conditions deal with element side sets, while 

the nodal furce boundary condition applic’s io I;,:c!~! point sets. 

7.2.1 Pressure 

The set of consist cnf nodal point forces arising from pressures distribut.ed over an 

elcrncrlt side are definc*d via the !)riJlciplc of virtual work 1)~ 

hll,]fil = 61li* @I( -pni)dA . (7.4) 
s 

where the range of the lowercase subscripts is 3, while 1,he range of uppercase subscripts 

is 4. 

Since the virtual displacen1cnt.s a.rc arbit.rary, they may be eliminated to yield: 

The most general pressure disf.ribut.iog we allow is mapped from nodal point pressure 

values via the isoparamet ric shape functions. The resulting expression for the consistent 

nodal forces is 

fil = -pJ 

J 

dt$Jn.idA . (7.6) 
S 

For the eight-node uniform stress element used in PRONTO, q51 is given by 

.(7.7) 



,. . 
( ‘(/ 

The above integral involves 64 terms. Only terms with ev’en powers of both ( and 

71 are nonzero. Of the tl le remaining 16 terms, 4 vanish due to the properties of the 

alt.ernator. The final 12 terms are given below. 

integrating yields 

The above expression may be evaluated t.o yield the following forlnula for calculating 

t.he nodal forces: 

+ &[(zj2 - "jl)(xk.? - 3.k4) + (*rj3 - zj.l)(;Ck* - Sk*)) 

( 3,712 t p3 ) 

i I 

(21)3 + 112) 

-&4 t p*) 

where {i, j, k} form a negative permutation. Note that a positive pressure gives forces 

directed inward. 

The nodal values for the pressure are calculated using the user-supplied scale factor 

and time history function. The values are calculated at the beginning of the time step. 

The application of the pressure boundary conditions is fully vectorized. Element 

sides are processed in vector blocks using the vector block scratch element space. After 

the consistent nodal point forces are calculated for a block of element sides, they are 

accumulated into the global nodal force array. 

t -,I 
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7.2.2 Moving Pressures 

The moving pressure boundary condit.ion implernent~cd in PRONTO represents 

a relatively simple way of incorpora.ting bo?.h a spatial and t.emporal dist.ribution of 

prcssurc ioading on a surface. ‘I’he irnPlerner,t.at.ion described here is intended for blast 

type loading on a sul,facc wh~rt t.hc blast. originates from some point. defined by the 

coortlinatcs (I’“, ?jo, zo) and propagates along the surface. We assume f hat the surface 

is flat and t hc dist.ancc 1rom any point. on t.he surface t.o point. (~0, yo, ~0) is given by 

tl. ‘I’heri t.licB prcssurc al. any !mint. is writ.t.cn as 

p( T, d) = f7Tf -tJT (7.15) 

~*ltcrc T is t,hc t.irtlc rtlc~asurcd front t,hc arrival of the pressure wave at. t,he point and a 

a11t1 1~ arc f~inctions of (list ~IIICC, whicll arc defined below. If 111 is i.he propagat,ion speed 

of t IIV prcssrlrc 12’itv(’ alor~g f tre surfilcf:, t,hen 7- is given LJ 

d 
7 = l” $ - 

71, 
(7.16) 

M’hcrc lo is 1 hc prcssurcx iIlitiat,iorl timr at the point. (xo,~03 zo). The t.imc at. which 

f%j~~ai ioIl ‘7.1:) gives ;I lllilSiIllllll! for l.hc prcssurc is 

I 
l- 111 ,I I =-- 

b 
(7.17) 

\Vtiicll we rcff-r to as III<, ri3r t.illlc. ‘l‘hf, peak pressure obtained at this t.imc is 

(’ -1 

I’m,* = 7,” * (7.18) 

\Yc allow 111~ Ilscr to (lrfinc t\vo functions of distance from the point, (;co,yo, ~0) which 

clc~scril)c~ t II<’ l)c’lIiI\‘iol. (,I” 1 IIc i)rcSSlirC Wil\‘C. The first. funclion defines t.he peak pressure 

il.; ;I ~IIIICI iorl of (list i\IIcc’ while t IIC second describes the rise lime as a function of 

(liSt.iLIlCC. I!siIlK E(]lliltiOIIs 7.17 ilIlt i.18, we can writ.e the parameters 0 and b as. 

f1rrici.io1r.c: of disi ancc 

(7.19) 

‘J‘hc user can dcfinca t hc iunct.ions in any manner he sees fit., :vhich allows for a quite 

general spccificat.iori of t.hf* moving pressure wave. If t.he user inputs a zero value for the 

propagation, speed, ur, t,hr code assumes that, the pressure is applied instantaneously 

iLlOIlg t.hC Stlrfacc (i.e., t.his corresponds to an infinite propagation speed). If the as- 

sumed pressure description given by Equation 7.15 is not suitable, it is a simple task 

t,o change this description to some other two parameter functional form and alter the 

code accordingly. 
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7.2.3 Nodal Forces 

Nodal point e~t.ernal forces arc applictl by calculating the magnitude of the ~o:c:: 

determir:ed by the user supplied scale factor and time hist.ory function. The time 

history function is evaluat.ed at t.he beginning of the time step. 

7.3 Nonreflecting IBoundaries 

In a number of geot.echnical applications, it is desirable to model an infinite or 

semi-infinite space. In t,hese applications, waves are transmitted outward from some 

dist.urbance and are ab:;orbed in t.ht far field. PRONTO contains a boundary condition 

specification which will ahsorb waves and suppress any reflection back into the intlzrior 

mesh. This allows for a ~nuch snlal!cr mesh and a significant reduction in the number 

of degrees of freedom in t.he problenr. 

The absorbing or nonreflect.ing boundary which is implemented in the code was 

proposed by Lysmer and Kuhlemcyer 1331, and discussed in detail by Cohen and Jen- 

nings 1341. Tt lc exterior infinite region is replaced by an energy absorbing boundary 

conditioll. ‘I‘he basic itlea is 1.0 ap~)J;: houlld;lry tractions which will exactly cancel the 

stresses \vtlicli are gcncrat.cd at Ihc free surfac(b. On this i)oundary surfac:, tractions 

arc iIJ)J,JiC’tJ of l.hc forrll 

(7.20) 

nornlal sl ress applied to t,hc boundary 

sllear St rc’ss ilJ)J)JiCtJ to t Ilc l)ounclar-j 

velocity coin poncnt normal t.o the boundary 

velocity coInponent t.angent.ial t.o t,he boundary 

current. density of the material at the boundary 

current s-wave velocity in t,hc material at the boundary 

current Jb-‘A’iiVC velocity in t,hc material at the boundary 

(7.21) 

The w;ive s~>eet!s required in I:quat.ions 7.20 and 7 .21 a.re calrula.ted using t,he effective 

shear and dilat.at.ional mo,duli dckrnlincd in Sect.ion 11.4. 

The tractions given by Equations 7.20 a.nd 7.21 are used with the consistent. r\.odicl 

forces which were derived in Section 7.2.1. The normal and tangential nodal velocities 

are determined for the four local nodes of the element side to determine the correct 

0 II 
101 



tractions. These are usccl in Equation 7.14 for both the normal and shear components 

to give the proper consist.cnt. nodal point. forces for the absorbing boundary. 

ml. 
I IIC ~pp~iC&tiOil of t.!;c ;:o::refiecti.., nn boundary condition is vectorized in a manner 

similar to the pressure boundary condition. The effect.ive moduli required for the wave 

speed det.erminations in Equations 7.20 and 7.21 are computed during the main element 

loop and stored for c‘1enlent.s having this boundary condition. 

.--, 
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8. INITIALIZATION AND TIME-STEPPING 
ALGORITHM 

8.1 Initialization 

The user defines a mechanics problem by specifying material properties, body 

geometry, initial conditions, tractions, and kinematic constraints. PRONTO does an 

extensive amount of data checking to t.ry 1.0 insure that the user has defined a valid me- 

chanics problem. These checks range from mundane (e.g., Are positive mass densities 

provided for the materials?) to more subtle (e.g., Are all the contact surfaces simply 

connect.ed?). We d o not guarant.ee that. PRONTO will always detect. bad dat.a, but 

experience has shown that it is usually smarter than both the users and the authors. 

By “init.ialization ” we mean the calculat,ions which must be performed and the data 

structures which must be set up before entering the time-stepping loop. There are two 

initiahzation processes in PRONTO. The first h as to do with setting up the init,ial data 

structures according to user specifications. This is all done in t.he INIT rout.ine which is 

called from the main program. The initial disp1acement.s and velocities are first set. to 

zero. Then t.hc initial velocities defined by the user are set. The stresses and internal 

st.ate variables also are initialized to zero. The internal state variables are subsequently 

reset to the appropriate init.ial values for the respective material model, if necessary. 

Construct.ion of surface dat,a structures and the initial tracking of the contact surfaces 

are also performed wit.hin t,he INIT routine. 

The second, and more subt,le, initialization which must be performed concerns the 

resolution of t.he init.ial velocity field defined by the user with the kinematic c.onst.raints. 

A pseudo-t,irnc step is performed t.o force the initial velocity field t.o be kinemetically 

compliant. It is important to enforce the initial const.raints before entering the element 

processing loop in order to allow the shock visc0sit.y (quadratic bulk visc0sit.y) to 

respond. 

To illustrate the necessity of this operation, consider the case of a bar st.riking a 

rigid wall at some nonzero initial velocity. The user defines a rigid surface and assigns 

all of the material in the bar the same initial velocity towards the wall. But the nodes 

initially in contact with the wall would then violate the rigid surface constraints. To 

restore kinematic compliance, the initial velocity of these nodes would have to be reset 

to zero. This induces a high initial strain rate in the first row of elements. 

The pseudo-time step is performed within the SOLVE routine prior to entering the 
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time step loop. It uses t.he initial time increment determined in the INIT routine during 

the elelnent. mass calculations. The algorithm proceeds as follows: 

1. Set the pseudo-time accelerations equal to the trial velocities divided by the initial 

time increment. Then set the velocities to zero. 

2. Predict a new c,onfYguration based on these pseudo-time acc.elerations. 

3. Calculate acceleration corrections which enforce all kinematic const.raints, except 

prcscl-ibed acceleraiions. 

4. Reset the initial velocities equal to the corrected pseudo-tilne accelerations mul- 

tiplied by the initial time increment, and reset. ‘;c::: current coordinates to the 

original configuration. The initial velocity field is now kinematically compliant. 

We translate t,he trial velocities to pseudo-t.imc accelerat.ions strictly for algorith- 

mic convenience. All kinelnatic constraint,s are enforced by PRONTO via accelerations. 

Therefore, the pseuJo-time accelcrat.ions can use t.he same code as the main time step 

loop to enforce constraints. 

PRONTO nest ent.crs the time step loop. The initial time step is performed the 

same tvar as all subsequent steps, mcrpt t/jai the constifuiir~c sfatc is not updated! 

8.2 Tillle Step Loop 

The order of oljerations \vit.hiri the time st.ep loop is crucial t.0 ensuring correct. 

resu1t.s. PRONTO’s tinle-stepping algoril,hm proceeds in the following order: 

1. Assemble t.he int.ernal forces from the following: 

(a) Calculate element. strain rates. 

(b) Advance the constitut.ive st.at.e ,o the end of t.he time step. 

(c) (Yalcu1at.e force cant ri but.ions ;luc t.o st,ress divergence, art.Xcia? viscosity, 

and hourglass resistance. Determine the new st.able time increment.. 

2. Apply cxt.ernal loads: pressures, nonreflecting boundaries, and nodal forces. 

3. Calcu1at.e accelerations and predict the configuration at. the end of the time st,ep 

ignoring kinematic constraints. This predicted configuration will be used in the 

contact and rigid surface routines to determine the corrections which must be 

made to the aticelcrations to bring the surfaces back into compliance. 
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4. Apply kinematic constraints by altering the accelerations to satisfy prescribed: 

displacement, velocity, and acceleration. 

5. Enforce rigid surface and contact surface constraints by altering the accelerations, 

without disturbing the corkraints enforced above. 

6. Write output, if timely. 

7. 1ntegrat.e the velocities and displacements forward using the compliant, accelera- 

tions. Update the current spatial coordinates. 

8. Updat,e the current time and go back to step 1 if more time is required. Otherwise, 

exit the time step loop. 

Most of the computation time in PRONTO occurs in step 1. Elements are pro- 

cessed in material and vector blocks during this phase. See Appendix B for further 

description of this process. 
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9. NUMERICAL EXAMPLES 
.&z 

In this chapter we present. two representative example problems which demonstrate 

many of t.he features found in PRONTO 3D. In addit.ion, all the example problems 

presented in the PRONTO 2D [I] manual were duplicated using the three-dimensional 

code. 

0.1 Sphere Impact 

This example problem is intended t.o demonstrate the robust nature of the contact 

surface algorithms described in Chapter 6, as well as the extremely large deformations 

,:’ and clist.ort.ions which the uniform strain hexahedron can perform. Figure 9.1 shows 

a Icm thick plat,e \vhich is made of rolled homogeneous armor (RHA). The plate is 
I 

impacted by a sphere of radius 2cm which is made of Staballoy. Table 9,1 lists 

the clast.ic/plast ic combinctl hardening mat.erial properties used in the analysis. The 

impact velocity is 1000 m/set at an angle of attack of 30 degrees. 

Table 9.1. Sphere Impact Problem hlaterial Properties 

t- 

- 
RHA St aball 

Densit.) i800 kg/m3 18,620 kg/m3 

Young’s Modulus 206.8 Gpa 195.8 C’r?. 

Poisson’s Ratio 0.3 0.203 

Yield Stress 1220 Mpa 1036 klpa 

Hardening Modulus 1220 hlpa 1036 hlpa 

Beta 0.5 0.5 - 

There are 9052 e1ement.s and 1089’7 nodes in the mesh. The problem ran for 94.4 

cpu seconds on a CRAY X-MP 4/16 under CTSS with CFTLIB. The tot.al number of 

t.ime steps was 411; this yields a. value of 25.4 microseconds per element cycle. c 

Figure 9.2 shows a sequence of four different, times during the impact event. The 

analysis was run to a time of 8.25 microseconds, at which time an element turned 

inside out and the code stopped. This represents t!le limit that the Lagrangian code 

can continue to model the event. Note the severe distortion in the elements which 
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Figure 9.1. Sph ere Impact Problem Mesh 
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form the impact. crater. This distortion poses a tremendous challenge to the contact 

surface a!gorit.hm because element faces along the edge of the crater become extremely 

warped. Figure 9.3 shows views of t,he formation of the impact crater at the same four 

times as in Figure 9.2. 

Figure 9.4 shows the PRONTO 3D commands used to define this problem. 

Figure 9.2. Time Sequence from the Sphere impact Problem 
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Figure 9.3. Impact Crater Formation during the Sphere Impact Problem 
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TI'TLE 
30 FT CASK DROP, IMPACT VELOCITY = 43.95 FPS 

TERMINATION TIME = 5.E-3 
PLOT TIME = .2E-3 
OUTPUT TIME = .OlE-3 
PLOT NODAL = DISPLACEMENT 
PLOT ELEMENT = VONMISES 
PLOT STATE = EQPS 
CONTACT SURFACE = 202,201 
CONTACT SURFACE = 102,101 
CONTACT SURFACE = 88,89,0.,1, 
NO DISPLACEMENT Z = 1 
NO DISPLACEMENT X = 3 
NO DISPLACEMENT Y = 3 
NO DISPLACEMENT Z = 3 
INITIAL VELOCITY MATERIAL = 1 , 166.7 , -500.3 , 0. 
INITIAL VELOCITY MATERIAL = 2 , 166.7 , -500.3 , 0. 
INITIAL VELOCITY MATERIAL = 3 , 166.7 , -500.3 , 0. 
MATERIAL 1 = ELASTIC PLASTIC , 7.366-4 $ STEEL 

YOUNGS MODULUS = 29.E6 , POISSONS RATIO = .33333 
YIELD STRESS = 40.E3 , HARDENING MODULUS = 40.E3 , BETA = 1. 
END 
MATERIAL 2 = ELASTIC PLASTIC , 10.53-4 $ LEAD 

YOUNCS MODULUS = 2.E6 , POISSONS RATIO = .44 
-fIELD STRESS = 2000. , HARDENING MODULUS = 0. , BETA = 1. 
LND 
MATERIAL 3 = ELASTIC PLASTIC , 7.366-4 $ STEEL 

YOUNGS MODULUS = 29.E6 , POISSONS RATIO = .33333 
YIELD STRESS = 40.E3 , HARDENING MODULUS = 40.E3 , BETA = 1. 
END 
MATERIAL 4 = ELASTIC , 1. $ RIGID PLATE 

YOUNGS MODULUS = 1000. , POISSONS RATIO = 0. 
END 
EXIT 

Figure 9.4. PRONTO 3D Input Commands for the Sphere Impact Problem 
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0.2 Cask Impact 

In this example problem a generic waste transportation cask is dropped from 30 

feet. onto a rigid rc’l. The impact velocity is 43.95 feet per second. The angle of impact 

is such that the cent.er of gravity of the cask is over the corner where the impact occurs. 

The mesh of the cask used in the analysis is shown in E’igure 9.5. The cask has 0.5 

inch thick steel inner and outer liners with 3.5 inches of lead shielding bet.ween them. 

Table 9.2 lists the elastic/plastic material properties used in the analysis. 

Table 9.2. Cask Impact Problem Material Properties 

i---I ~ Steel Lead 

Poisson’s Ratio 

Ilartlcning Modulus 

The analysis was run to a tot.a! time of 5 milliseconds. Figgc’re 9.6 shows the total 

kinetic energy in the syst,em. Rebound occurs at 4.6 milliseconds, at which time the 

deforma.tions in t.he cask are the largest,. The configuration at. that t.ime is shown in 

Figure 9.7. The deformations in this analysis are not extremely large, as can be seen 

in the figure. Nevertheless, the materials in the cask, particularly the lead shielding, 

develop large plastic st.rains as shown in Figure 9.8. 

This problem is included because it entails a large amount of contaLt data. A 

contact surface is defined between the liners and the shielding, and between the outer 

liner and the rail. The three contact surfaces make this a highly contact intensive 

analysis. The problem t,ook 10932 time steps and used a total of 3732 cpu seconds on a 

CRAY X-MP 4/1G under CTSS with CFTLIB. This gives a value of 32.7 microseconds 

of cpu time per element cycle. Comparing this number with the value of 25.4 for the 

previous problem, shows that the intensive contact calculations for this problem carry 

only a 29 percent penalty. 

Figure 9.9 shows the PRONTO 3D commands used :c, define this problem. 
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Figure 9.5. Cask Impact Problem Definition 
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Figure 9.6. Kinetic Energy during the Cask Impact Problem 



Figure 9.7. Deforlued Shape at 4.6msec of. Cask Impact Problem 
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Figure 9.S. Equivalent Plast.ic St.rain Developed in the Cask Impact Probiem 



TITLE 
STEEL SPHERE IMPACTING STEEL PLATE AT 1000 M/SEC - ANGLE = 30 DEGREES 

TERMINATION TIME = 8.25E-6 
PLOT TIME = .25E-6 
OUTPUT TIME = .25E-6 
PLOT ELEMENT = VONMISES 
PLOT STATE = EQPS 
PLOT NODAL = DISPL 
CONTACT SURFACE = 100 , 89 
INITIAL VELOCITY MATERIAL = 1 , 500. , -866. , 0. 
MATERIAL 2 = ELASTIC PLASTIC , 7800. $ RHA 

YOUNCS MODULUS = 206.8E9 
POISSONS RATIO= .3 
YIELD STRESS - 1220.E6 
HARDENING MODULUS = 1220.E6 
BETA =' .5 

END 
MATERIAL 1 = ELASTIC PLASTIC , 18620. $ Staballoy 

YOUNGS MODULUS = 195.8E9 
POISSONS RATIO= .203 
YIELD STRESS = 1036.E6 
HARDENING MODULUS = 1036.E6 
BETA = .5 

END 
NO DISPLACEMENT Y = 300 
NO DISPLACEMENT Z = 333 
EXIT 
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Figure 9.9. PRONTO 3D Input Commands for the Cask Impact. Problem 
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Listed below are all the kkywords supported by the PRONTO 3D cotimand lan- ‘, 

guage. The uppercase letters represent the minimum abbreviation of each word. 
‘I 

1. TITle 

2. TERMination Time 

3. OUTput Time 

4. REAd REStart 

5. WRIte REStart 

6. PLOT Time 

7. PLOT NODal 

8. PLOT ELement 

9. PLOT STate 

10. PLOT HIstory 

I 1. Time STep SCale 
12. B\lLK V1Scosit.J 

13. HOllRglass STIFfening 

14. EXIT 

15. FliNCtion 

16. NO DISplacement 

17. PREScribed VELocity 

18. PREScribed Acceleration 

19. PREScribccl FORce 

20. JNITial VELocity NODeset 

21. INITial VELocity MATerial 

22. INITial VELocity ANGular 

23. PRESsure I 

24. MOVing PREssure 

25. SILerlt BC 

26. RIGid SURface 

“7. CONtact SURface 

31: B\JRN CONstant 



The user presents inpu t data to PRONTO in a keyword driven, free field.format 

command language. The command lines may be in any order the user finds conve- 

nient. Each command is described below in the order in which they are listed above. 

The boldface words are the command keywords. The words following each command 

represent. input parameters which the user should specify. Default values are defined 

where appropriate. Example command files are shown in Chapter 9. 

The free field parser allows the user to delimit entries by one or more spaces, a 

comma, or an equals sign. Consecutive delimiters define a null (defaulted) field. 1Ve 

suggest using spaces between keywords, an equals sign to separate the command from 

the parameter list, and commas between values. Material data is input via material 

cues; an equal sign is helpful to separat.e each cue from its associated value. See the 

examples following command 28. 

A dollar sign allows t.he user t.o place a commer.t. on any line; anything following a 

dollar sign on an input. line is ignored. An asterisk at the end of an input line indicates 

t,hat. the line is c.ont.inued on the next. line. This input style is described in greater 

dct,ail in [S]. 

1. TITle 

ent.er a suit able title on t,he nc;rt line 

2. TERMination TIrne 

t.crrd 1 illlc 1.0 1crniinai.c t.hc analysis 

3. OUTput Time, tout. 

t.oui. time interval at which to print output. 

(default. = t.end/200, whcrc tend is defined via command 2) 

4. REAd REStart, restrn 

res t.ni time at which restart is to begin 

5. WRIte REStart, trsdmp 

t.rsdmp time interval at. which to write restart. dump files 

(default. is to write no rCsf.arb files) 

G . PLOT Time, tplob, tstart, f.pend 

tpl0t t.jrnc interval nt whicl 
(dcfau]t =’ (t,pcnd-t,st 

time to start writing 



7. PLOT NODal, nodal variable 1, nodal variable 2, . . . 

allowable nodal variable names (can b,e abbreviated to 3 letters): 
DISPLACEMENT - displacements ( DISPLX, DISPLY, DISPLZ ) 

VELOCITY - velocities ( VELX, VELY, VELZ ) 

ACCELERATION - accelerat.ions ( ACCLX, ACCLY, ACCLZ ) 

REACTION - reactions ( RX, RY, RZ ) , 

MASS - lumped mass ( MASS ) 

The nodal variables written to the EXODUS file by default are the displacements, 

the velocities, and the acceler&tions. The displacements are &jays written to the 

EXODUS file. The names in parentheses are the alphanumeric names assigned to the 

variables on the EXODUS file. 

8. PLOT ELement, element variable 1, element variable 2, . . . 

allowable element variable names: 

STRESS - stresses ( SIGXX, SIGYY, SIGZZ, 

TAUXY,TAUYZ,TAUZX) 

ENERGY - internal energy density ( ENERGY ) 

STRAIN - total st.rains ( EPSXX, EPSYY, EPSZZ, 

EPSXY, EPSYZ, EPSZX ) 

RATEDFM - deformation rates ( DXX, DYY,DZZ, 

DXY,DYZ,DZX) 

STRETCH - left stret.ches ( STRECHXX, STRECHYY, 

STRECHZZ, STRECHXY, 

STRECHYZ,STRECHZX) 

ROTATION - rot.al.ions ( Rll, R21, R31, 

R2i, R22, R23, 

R31, R32, R33 ) 

DENSITY - current density ( DENSITY ) 

PRESSURE - pressure ( PRESSURE ) 

VONMISES - vonMises equivalent stress ( VONMISES ) 
T)T~T rf n u u JJny _ bulk viscositg Pressure ( BTJLI(Q ) 

: 

The element variables written to t.he EXODUS fiIe by default are the stresses and 

the energy density. The names in parelitheses are the alphanumeric names assigned to 

the vartables on the EXODUS fiie. t 

PLOT STate, itate variable 1, state variable 2, . . . 0 . . 

.’ The user can ask fo 

EXODUS file. Table A. 



model. See Chapt.er 4 for definitiw.; of these variables. There are no state variables 

,writt.en to t.he EXODUS file by default 

Table A.l. Internal State Variables Available for Each Mat.erial Model 

MATERIAL 

ELASTIC 

EL..4STIC PLASTIC 

VISCOPLASTIC: 

DAMACE 

HYDRO 

LOW DEN FOAR’I 

SOIL N FOAMS 

EP HYDRODYNAMIC 

ALLOWABLE NAMES, --- 
(no internal state variables) 

EQPS RADIUS ALPHA11 ALPHA23 

ALPHA33 ALPHA12 ALPHA23 ALPHA31 

EQPS SICYLD 

EQPS DAMAGE EVMAX FRACSIZE 

CRKDENS 

(no internal stat.e variables) 

PAIR 

EVMAX EVFRAC EV NUM 

EQPS RADIUS ALPHA11 ALPHA22 

ALPHA33 ALPHA12 ALPHA23 ALPHA31 

WARNING: lndiscriminair USC oj cornmonds 6, 7, 8, and 9 can create cztrcmcly 
la.rgc EXODUS jilts! 

10. PLOT HIstory, VARIABLE = variable name, COOR.D = x0, yo, -0, I.- 

NAME = user name, CORJP - camp name 

V,4RIABLE keyword which defines the varrable to be placed on the data 

base. Can he a nodal, an elenlent or a st,ate variable name. 
variable name any valid nodal, element, or st.at.e variable name 

For nodal variables, t.hc valid names (which may be 
: . .I 

abbreviated to three characters) are: 
DISPLACMENT .i. :: I .,.’ .~’ 

VELOCITY . ‘.. ._ . . . . 

ACCELERATION 
‘ 1’. ( : iz ‘r I ,:,;y:;,> I./.* 
,_ yy, -ic 

REACTION , <; ?:$ ,;‘, *:-‘r :* 

MASS ’ 4 ..:., 

,_.. ‘* 
STR.ESS 

,,, ,, 

-. ,RATEDFM _’ 



L. 
: ,:; 

,. ;-,:,’ 
‘, i , .I_ ; ‘. 

.+! 
/,,* 

PRESSURE 
I 

,( . 

VONMISES 
L .’ ‘_ : : ,,- ,‘ b( ‘_ 

BULKQ : ;, .., , 4:. ! . .f 8, 
For state variable names, the valid names are listed in 

.; : I’ 
. ., 

Table A.l. 

COORD keyword to define the position of the history point 

20, Yo, 20 coordinates of the history point (3 data values). PRONTO 

will find the n.earest node or element to t?ris position. 

NAME keyword for n.aming the output variable 

user name user supplied history output name. Must be between one 

and six characters. If the component specification is omitted 

for a vector or tensor variable, PRONTO will construct 

names for all the components by using the supplied name 

and appending the vector or tensor component designations. 

The user name must be unique for each history point 

defined. Futhermore, the user name must not conflict with 

the nodal, element, or global names that PRONTO defines 

(e.g., NAME=SIC will conflict with the element stresses, 

while NAME=SICA will be unique). 

COMP optional keyword that specifies the component of the vector 

I’ or tensor. This option is not allowed for scalar variables 
i -. (e.g. PRESSUXE); t.h is includes a.11 state variables. If you 

do not specify a component for a vector or tensor variable, 

PRONTO will create history variables for all components. cl 
camp name Vector or tensor component specification ._ ’ ..1’ . .- 0. 

For vectors: X, Y, or Z 1, .: .:: 

For tensors: XX, YY, ZZ, XY, YZ, 0; ZX 
., . i’ : 
_. ’ i 

,;:, .! I, 

11. The STep Scale, scft, ssft 
.: ’ 
:..: . ‘.‘ . 

scft scale factor to be applied to the internally calculated global 
,_. . . .*. / . -.,, 

time increment : 

,12. BULK VIScosity, bl, 52 . , )’ 



13. HOURglass STIFfening, hgstifl’ 

hgstiff hourglass stiffening factor’ 

(default = .05) 

14. EXIT 

terminates command input; remaining lines in command file are ignored 

Y-- 
15. FUNCtion, function id ! 

func.tion id any nonzero integer by which you wish to identify this 
I.. J 

function. Each function must have a unique id. 

After a FUNCTION command you must enter a list of points defining the func- 

t.ion. Each abscissa-ordinate pair is input on a separate line immediately‘ following 

the command line. The list is terminated by a line containing the END command, as 

shown below. 

Xl, fb) 

x2, f(x2) 

X”, I(R.n) 
END 

The abscissae of a function rnusf increase monotonically. PRONTO linearly in- 

terpolates bct.ween function points, but does no/ extrapolate. If the argument. to the 

function fal!s outside of the user specified range, PRONTO ignores the boundary con- 

dition or load associated with that function. This means that. a boundary condition 

can turn on or off at. a specific time . 

(- 
L 

. 
16. NO DISplacement, direction, node set id ‘. 

r._, 
direction X,Y,orZ i .; ,I. I, 
node set id must match a node set on the GENESIS file $ .‘./, . . 

I.1 “i &.J _,y ..:: ..-y, 
PRONTO enforces zero displacement in the specified direction for each 

: .:iq I,, , 
a:y:,1F.,:7 

node in this set. 

17. PREScribed VELocity, direction, node set. id, funct.ion id, scale factor, * ,%:$$i$:: I (I, i, _’ ‘. :, . . 
Cr, $9 cz, 11. =, n.y, lb . ‘.$‘,. ,: 5 ’ .I,, ._> ,,$ -1 :’ 

direction X, Y, Z, R,ADIAL, CYLINDRICAL, NORMAL, or ‘; . ,,:;:;k~;;;~&$$$ 

SPHERICAL : : :;p: $?q> ‘. :. ,, I y::& i 

node set id must ma:ch a node set on the GENESIS fi 
I 

function id must match a function defined,via commai r ,, 
scales the function values ’ ~_‘I; .‘; : ,,I 

.’ ‘I .,.,I 
scale factor i i 

.,, -i .,,,: y+$$y-: 

(default’=l.O). I’, .,:;;: ,“;;;e ;’ 
;,:_ : ;;.t: ,. *i.;.*,J.+&$ “‘. :.:-. .,,, :.; .,.,. i ;- j. >$y. ,.‘.qyJ 

$:;,,,: :-:-:,‘a “&~~~~:*@&& ;:‘i’:.:‘y,,.‘..,*,. ;, <, 



,,r. 
I 

cent.er point coordinates, defined only for options: RADIAL, 

CYLINDR.ICAL, or SPHERICAL 
axis or normal vector, defined only for opticns: RADIAL, 

CYLINDRICAL, or NORMAL 

,.. 

PRONTO sets the appr0priat.e component of velocity of each node in t,his 

set t.o the product of t.he time function value and t.he scale fact.or. The 

RADIAL opt.ion defines the radial velocity component with respect. to a 

cylindrical coordinates syst.em defined by the center point and axis vector. 

The C~YLINDHl(‘AL option defines the t.angential (counterclockwise) 

velocity wit.h respect t.o t.his cylindrica! coordina:z system. The NORhlAL 

opt.ion silnply defines a (‘artesian colnponcnt in a direction which is not. 

aligned with one of the co0rdinat.c axes. Finally; the SPHERICAL opt.ion 

defines the radial velocity with rcspcct to a spheri:;! coordinate syst.eIn. 

18. PREScribed Acceleration, dircctiorl, node set id, function id, scale factor 

direct ion N. j’. or % 

node set id ~nust 111at ch a node set on the GENESIS file 

function it1 111r1st rematch a frlnztiorl tlcfined via command 15 

scale fat: or SCillrS t IIt’ lLlllC1 ioll \.iIlUC. 

(clcfault .: 1 .O) 

PRONTO set F the spccifietl c-o~lll)on~‘nt of acc~ler;ctioll of each node in this 

srt to t hc product of t hc tillIt* function \'illLl(' arld the scale fact.or. 

19. PREScribed FORce: dircbctiL)rl. IIO~C s(‘t id. function id. scale factor. 

cr. (j/. t’; , It,. It!, . 7): 

dirclct.ion s, j’. z. l~Al~I.41,. (W,1s1)RI(:Al,, NoRnlAL, or 

sI’t!:~;1~1(‘.41, 

node set id 111r1st 1natct1 a 110tlc FC! 011 t11~> GENESIS file 

funcl ion id r~iusl matcll a function tlcfinrd via coninland 1.5 4 

scale fact.or scales t he fu ncl ion value “. :’ ..,:, 
.,‘.,k, 

(ticfault = I .O) : ‘_ 

C1.,C!/?C.. cmlcr point coordinates, defined only for opt,ions: R.4DIAL7 / I _._ ,.. : .s 
C1’LINI>RlCAL, or SPHERIC.4L 

; ,,;.,I : 

axis or normal vcct.or. dcfinctl ottly for options: RADIAL, 
,. ,,,I; p: \,I 

'lt~,71y,ll~ 
.‘.f.y< ‘+ 

Ck’L,INL)RlC~AL, or KORMAL ’ 
.’ ; . ,‘j; .; 

,, -‘. ‘l’ : .:.,, L‘! 
:,y,‘...., I, 

its t.he a1)Tropria.t.c force conlporlcnt lo eat.h Ilodc in t.his set 
~. 4.: 

PRONTO J pl a 1 .-:;J’ ~~:*.; 

to the product, of t.he tinlc 

command 17 for a descrip 
‘. 

,. 

,. 
: i. 

20. INITial VELocity NODes 

. 



PROSTO init.ializes each component. of the ve1ocit.y of each node in this set 

to the specified value. 

“1. INITial VELocit:; MATerial, mal.erial id. I’,, Y~,I’; 

material id nlust match an element block on the GENESIS file 

7’* ) i’g > 7’: vc.lOcily vector 

PRON’I’O irlit.ializes each component, of the velocity of each node connected 

to t.he specifivtl Iilaterial block to the specified value. :-\ 
I *I 

‘> ‘I --. INITial VELocity ANGular, mat.erial id, LJ, c,,cy.c,, nr,ny,n, 
mat e:iaJ id IIIUSI match an element block on the GENESIS file 

Lz angular velocity (radians per second) 

c J.‘C “p. f‘: venter point coordinal.es 

1l,, ‘lyr “, axis vecl or 

I’RONTO initializes the velocity of each node connected to t.he specified 

Inaterial block 10 correspond lo 1he given angular velocity field. The 

velocity vecto r for pacll node is calculated by mult.iplying the cross-product 

of 1 he r~or!~i;~lizctl axis and 111~ position vector from lhe cznl.er point to the 

notIf- 1)s 111~ ;111gk11ar vc~locily. 

PRONTO ;~I~l)lic~s ii I)rt’sslirc cacii lo 1 II(: I,roducl of 1 hc 1 ilile furiction value 

antI t hc* scalp fi\( I or to (*i\c]I ~~I~~IH~~I~I sitlc in I his set. Tl~c% calculalcd prcssurc 

value al each side ~lodc is Illult.iplicd by its side set scale factor a; wad front 

the G <ESlS file. A positive prcssurc is tlircct.cd inward 1.0 t.hc elenlent.. 

34. MOVing PREssure: sitlc set id, c,.,T~,c~, peak id, riw id, C’,,: lo! scale factor 

sitle set id 11111st m;\tcl~ a sitlc set WI t.he GENESIS file 

f3..CV)C-. cc~ticr point cwortlir~alcs 

I)(xak id 111us1 ril;il c-11 a funclion defined via command 15 

rise id IIIUS! rtlalclt a furtcliw dcfincd via colllnlarld 15 
3.: .: 
.J. i. )~_ s 

C’,, ]>r01)iLg;\liOll SpWtl .,' 
;..- 1. 

f0 arrival iilllc e 
scale fact.or scales the peak function value 

, 
.I-- 

(default = 1 .O) 

PRONTO calcula.ies the pressltre at each node in t,he side set. via. 

Ecll~at.ion 7.15. A posil.iyc pressure is direc 



‘5. SILent BC, side srt id 

side set. id must match a side set on t.he GENESIS file 

A nonreflecting boundary corldition is applied to each element side in this 

set. 

A rigif sllrf;icc corlclitioll is r’nforced for all nodes in this side set. 

1.9 

I’ I 

^: \.calocity (l(‘cay cocfIic.icnl 

.A court ac.1 condil ioll is v11forcetI I)t‘t \vt*t‘lI t hc I \v(i surfaces defined by 1 he 

rcssl)vcl ivc 5iclv sets. ‘I‘IIc killcrllatic \)artition is a relative weighting of the 

Illaster sl;lve rt-liit iolrsllil) of the l\vo slirfaces. A value of zero implies that 

th,o lirst surface (defined 1,~ sitle 1 id) act.s only as a nla.ster and the second 

surface ilCtS olllv as a sla\.(‘. A value of otie reversrs these roles. The default 

\XIIIC ((I..‘,) gives ;I synin~et ric 1 rral11ic111 of Ihe con1 act,. If one surface is 

JIIIIC~ 111orv Illassjve thar~ the other, this y3riable should be adjust.ed so that 

it is I rested as a 111ast cr. By massive. ~‘c mean t.hat t.he surface either has a 

higtlyr lll;ltcrinl densit). arld,i’or a coarser nlesh refinement. 

28. MATerial, material id, model. p 
. . 

material id must match an elmlent block on the GENESIS file I 

model valid mat.erial model nanlet the material models currently 

support.ed in PRONTO 3D are: 
EI,AS?‘l(: 

ELASTi(: PLASTIC 

VISCOPLASTIC’ 

DAMAGE 
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HYDRO 

LOW I>EK FOAM ‘, -1 

SOlL K FOAidS 
EI’ H~I)l~91>\-NAr\~1lC 

I’ rni~lerial c!r*nsilJ 

..I ~)I~r~,llri;,t(~ rllatcrial (l;rt :I for t IIt, given material model must be entered itnmcdi- -.. 
j 

Clft’i!; ff~l/f~/f’l?Jf] 1 IIt’ 11 ~1”I’l’~f~lIZ!, (.(~!11)11ifIl(j li1lC. The dala is entered in a keyword-value ./ 

f;~sIlioIr: it (‘f/f follo\vetl by its assig:rlc,tl value. Each material type requires its own set 

of Irlat~rial ~IIC~S. P1‘ll~, Ill;itcri;~l cues can he entered in any order, and on any number 

of in1)ul lines. :!II ESl> statc~~~cnt is rcaquired to terminate the material data. 

1,isted l)t~lo\\’ art> thy curre~lll\~ blIpI)ort ed Il,attrial models and. their required ma- 

lt'riitl CIICS. (‘01ks1111 (‘\laj)ter 4 for ticfinitions of t hcsc! parameters. 

I. 1:1,!2s’I‘I(’ \‘ol-N(;S hIor>l-LlrS 
f’olssoxs f~;~‘1‘1C) 

.) -. ~:I..4S’i‘i(’ l’l,:1S’I‘I(’ l’or:s’(:s ~IODl~I,l’S 
I’oJsso.~s IS:;TlO 
)‘I 1*:1,11 S.1.H 1.:ss 
11:\lIl)i:sl~(: ~lOD1~1,1~S 
13 El’:\ ,.-- . 

\‘oI’s(:s hlOI)l:Ll’s ‘. .__ j 

i’OlSSOXS RAT10 
1’114;LD STRESS 
ll.~RI~ENlNC: MODULUS 
GAhl.\lrZ 
I’ 

l’OliN(;S RIOI~IJLUS 
l’cJlssoxs RATIO 

l’lI:LD STRESS 
M 
Ii 
FI‘tACI’URE TOUGHNESS 

5. H1’DRO PRESSIlRE CUTOFF (positive in compression) 

A valid equation of state must he defined for this model via command 29 c 
v 

6. LO\C’ DES FOAhl j’OI!N(:S MODULUS . . : 

A 
I3 
c 

‘. ,, 126 . 
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NAIH 

PO 

PHI 

i. SOIL N FOAhlS BUL!! MODlJLUS 
TWO MU 
A0 
Al 
A 2 
PRESSIJRE C!IJTOFF (positive in compression) 
FUN(!TlON ID; if this value is zero, the original 
bulk modulus is used. Ot.herwise, this must 
mat.ch a function defined via command 15 which 
defines pressure as a function of volume strain. 

8. EP iiYDROi~YN.4MIC! Y’OUNCS MODi;L1JS 
POISSONS RATIO 
YIELD STRESS 
11.4RDENING MODlJLI?S 
I3 ETA 
PRESSl’RE (IlJTOFF (posirive in compression) 

A valid equation of state must. be defined for this model via command 29. 

Examples of how the user might input the material data for the ELASTIC PLAS- 
TIC model are given below. They illustrate several different st ylcs. All three examples 

vieid identical results as far as PRONTO is concerned. 

Example I : 
MATERIAL,l,ELASTIC PLASTIC,2.7E-3 
HARDENING MODULUS = 30.E4 
YOUNCS MODULUS = 30.56 
BETA = .5 
POISSONS RATIO = .3 
YIELD STRESS = 30.E3 
END 

‘Example 2: 
MATERIAL,l,ELASTIC PLASTIC,2.79-j 
YOUNCS MODIJLUS = 30.E6 POISSONS RATIO = .3 BETA =.5 

YIELD STRESS = 30.E3 HARDENING MODULUS '= 3G.E4 

) ,Example 3: . 

MATERI~L,l',ELASTIC PLASTIC,2,7E-3' " ~ ': 
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29. EQuation OF STate, material id, eos * 
, .1 -: j*;y- ’ 

material id must match an element block on the GENESIS $le 33 I_ %\ ‘Y# 

eos valid equation of state model name, the EOS models 

currently support.ed in PRONTO 3D are: 
MG US-UP 

‘ 

MG POWER SERIES 

JWL 

IDEAL GAS 

Appropriate material data for the given equat.ion of state modei must be entered 

immediafely following t.he EQUATION OF STATE command line. The data is entered 

in a lceyword-value fashion; a cut followed by its assigned value. Each model requires 

its own set of mat.erial cues. The material cues can be entered in any order, and on 

any number of input, lines. An END st.at.ement is required to terminate the material 

data. 

List.ed below are the current.ly supported equat.ion of st.at.e models and their re- 

quired mat.erial cues. Clonsult CIhapter 5 for definitions of these parameters. 

S 

G.4hlh1.4 

2. MC: POWER SERIES I;0 

II; 1 

K2 

’ 3. JWL 

s 

IDEAL GAS 

C:D 

A . 
* 

R ‘ 

OMEGA 

Rl 
‘. .,_ 

R3 

ENERGY “. 1 

GAMMA* j. 
SOITND SPEED : . . ‘k’. 



Example: / ‘.’ . 

MATERIAL,8,HYDR0,2.7iL3 
PRESSURE CUTOFF=-l.E9 $ (note: 

END 
EQUATION OF STATE,fj,MG U 
CC=5380 S=1.337 G,j)Q,fA=2 

END 

30. DETonation .POint, materi 

material id . 

match an element block on the GENESIS file 

c,,cy,cz detonation point coordinates 

to detonation time 

31. BURN CCNstant, bs 

32. 

33. 

bs high explosive burn constant 

(default=2.5) 
I 

DELete MATerial, material id, deletion time 

mat.erial id must match an element block on the GENESIS file 

deletion t.ime all elements in t.his material block are deactivated at 

t.ime .” 
‘. 

DEATh, material id, variable name, mode, level 

material id must. match an element block on the GENESIS file 

variable name the crit.ical variable may be one of the following: 

ENERGY 1 

VONMISES, 

PRESSURE 

‘, . 

. ii, 
,. 

.i. 1.’ 
:‘~ ,:.< 

mode the 
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Failure’ occurs in the MA)l;’ *,loae when t 

critical level. ABS mdde is similar‘ to h{ 

t.he critical variable is used’. ’ 

For example, the command 
.,. " 

DEATH = 3 , DAMAGE , MAX , .8 

would delete elements within the material hlo 

a value of 0.8. Note that PRONTO would 

DA hl AGE model. 
.; : : ..,, a;;,:‘.. ‘, , ;< i 
::. .+.*,,f.. 

g? ’ .‘< , ‘/ 
._ : 

I, :,.. i,.. d‘<., * : . :-’ ,: ,ti r, b..~-~<~ 

The user should be aware that it is possible‘to’defirk konsensical dat 

mode specificat.ion which is inappropriate for thh’c&zd’v&iable. An exkmple’of this’:“- .‘.f 

would be using the MIN specification with the VONMISES variable and a nkgativci I~ ‘. 

level. 

Car-c musi bc fakcn to avoid deleting clcmcnts which have side boundar 

applied to them! 
;: 
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B. STORAGE ALLOCATION FOR PRONTO 3D 

c- 
. 

B.l Dimensioning Parameters and Variables 

N arne Value 

MFIELD 22 
NEBLK 64 
NELNS 8 
NESNS 4 
NHGM 4 
NSPC 3 
NSYMM 6 

Description 

maximum number of fields per line of input 
maximum length of a vector block 
number of local nodes per element 
number of local nodes per element side 
number of hourglass shapes 
number of spatial coordinate components 
number of components in a symmetric tensor 

/ 
, ... . 

-.. 

Name Descriphon 

LCDATA length of contact surface data heap 
LCTEMP length of contact surface scratch heap 
MCONES maximum number of equation of state constants 
MCONS maximum number of material constants 
NACCBC number of prescribed acceleration constraint conditions 
NANCV number of initial angular velocity specifications 
NBCNOD number of node sets 
NBCSID number of side sets 
NCONT number of contact surface pairs 
NDEATH number of adaptive element deletion specifications 
NDETPT number of detonation points 
NEMBLK number of material blocks 
NFORCE number of prescribed nodal point force load conditions 
NFUNC number of functions 
NIVFLG number of initial velocity by node set specifications 
NIVMAT number of initial velocity by material Specifications 
NMPBC number of moving pressure load conditions 
NNLIST length of node set node list heap 

c 
‘i I J 

NNOD number of nodes 
NODISP number of no displacement constraint conditions 
NPRBC number of pressure load conditions 
NQUIET number of nonreflecting boundary conditions 
NRIGID number of rigid surfaces 
NSLIST length of side set element list heap 

.a 
/.' .I .) ,l , -'...: ., 
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NSVLST number of user selected state variables 
NTOTFV total number of user function data points 
NTOTSV length of internal state variables heap 
NUMEL number of elements 
NVELBC number of prescribed velocity constraint conditions 

B.2 Nodal Point Arrays 

In t.he following descript.ions, t.he t.erm uccfor identifies an array which st.ores the 
components of a Cart.esian vector for each nodal point. The components are st,ored in 
the obvious order: S: I,', 2. 

Name Dimension Descript.ion 

Y :,, 

c :/ 

r 

COORD 
CUR 
DISPL 
VEL 
ACCL 
FORCE 
XMASS 

(NNOD,NSPC) 
(NNOD ,NSPC) 
(NNOD,NSPC) 
(NNOD,NSPC) 
(NNoD,NsPC) 
(NNOD,NSPC) 
(NNOD) 

Original Coordinate Vector 
Current Coordinate Vector 
Displacement Vector 
Velocity Vector 
Acceleration Vector 
Force Vector 
Lumped Mass 

c 

B.3 Elenlent Arrays 

In t.lie foIlo;\ir~g descriptions, the t.ernl ict~soridentifies an array which stores t.he 

componenfs of a Cartesian tensor for each element.. For st.orage purposes, PRONTO 

cat.egorizes tensors as general or symmetric. PRONTO stores the components of a 
C:-fcnsor (general) as follows: X-Y, l’,Y7 2X, Xl,‘, YY, Zlr, X2, 1’2, 22. The 
components of an S-/cnsor* (symmet,ric) are stored: .;t’X, I’)‘, 22, Xl’, 1’2, 2X. 

Name Dimension 
LINK (NELNS,NUMEL) 

SIG (NSYMM,NUMEL) 
HGR (NSPC,NHG3,NUMEL) 

ELMASS (NuMEL) 
STRECH (NSYMM,NUMEL) 
ROTATE (NSPC,NSPC,NUMEL 
RHO (NUMEL) 
ENERGY (NUMEL) 
VISPR (NUMEL) 

'1 

Description 
Connectivity List; global node number of 
each local node 
Stress S-tensor 
Hourglass Resistance Vectors; one vector 
for each hourglass shape per element 
Mass 
Stretch S-tensor 
Rotation G-tensor 
Current Density 
Internal Energy Densiiy 
Bulk Viscosity Pressure 



sv (NToTsV) Internal State Variables Heap 

Each material block is allocated a specific portion of the SV array whose structure 
depends upon, the material model. The pointer IPSV locates this portion which is 
processed as SV (NINSV ,NELB) , where NINSV is the number of internal state variables 

per element for this material model and NELB is the number of elements in this material 
block. IPSV, NINSV, and NELB are defined for each material block within the KONMAT 
data structure. 

Each material block with a material model which references an equation of state is 
also allocat,ed a specific port.ion of the SV array for the storage of internal state variables 
for the equat.ion of stat.e. The structure of this array depends upon the equation of 
st.ate. The point,er IPESVlocates this portion which is processed as SVEOS(NESV,NELB), 
where NESV is the number of int.ernal stat.e variables per element. for this equation of 
state and NELB is the number of elements in this material block. Note that if NESV is 
zero t.he pointer is not used. IPESV, NESV, and NELB are defined for each mat.erial block 
within the KONMAT data structure. 

B.4 Optional Element Arrays 

The following element arrays are only allocabed if the user specifies certain options 
for which they are required, or t.he user specifies them on t.he plotting dat.a base. 

Name Dimension 
STRAIN (N~YMM,N~MEL) 

DOPT (NSYMM,NUMEL) 

STATUS (NUMEL) 

Description 
Strain S-tensor; allocated if the strain 
flag KSFLG = 1 
Deformation Rate S-tensor; allocated if 
the strain rate flag KSRFLG = 1 
Activity Status; allocated if the status 
flag KSTAT = 1: 

0 = inactive 
1 = active 

B.5 Material Block Arrays 

All elements in PRONTO are processed in itJaf.erial Bloclzs; contiguous groups of 
elements which share a common material model and data. The KONMAT data structure 
associates each material block with a material model. 

The material model properties data structure PROP and equation of state properties 
data structure EOSDAT for each material block are stored within a column of the DATMAT 

133 



array. This array is allocated rectangularly for convenience; the structure of each 
column depends upon its model. The material model definition interface returns the 
maximum number of material properties MCONS and equation of state properties MCONES 
that will be required. PRONTO adds 2 words to MCONS and 1 word to MCONES to store 
some reserved properties. 

Each mat,erial block is assigned a deletion time. If the material block is to remain 

act.ive, its deletion time is set beyond the termination time. A negative time indicates 
that. a material block has been deact.ivat.ed. 

Name Dimension Description 

KONMAT (IO,NEMBLK) Material Block Data Structure: 
( LN) = material id 

( 2,N) = material type 
( 3,N) = first element in block 
( 4,N) = last element in biticir 

( 5,N) = number of elements in block 

( 6,N) = number of internal state 
variables 

( 7,N) = IPSV, pointer into SV heap 
( 8,N) = EOS type (if any) 

( 9,N) = number of equation of state 
internal state variables 

(10 ,N) = IPESV, pointer into SV heap 

DATMAT (MCONS+MCONES,NEMBLK) Material Properties Data Structure: 
(I, N) = PROP(I) 
. . . 

(MC~NS-I, N) = original dilatational 
modulus 

(Mc~Ns, N) = original density 
(MCONS+I, N) = EOSDAT(I) 

DELETE (NEMBLK) 

. . . 

(MCONS+MCONES,N) = original wave speed 
squared 

Material Block Deletion Time 
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B.6 Contact Options 

B.6.1 Contact Surface Arrays 

NaIne Dinlension 
KLSURF (20,NCONT) 

CLSURF (4,NCONT) 

KSLIST (LCDATA) 

CONDAT (LCTEMN 

Description 
Contact Surface Integer Data Structure 
(the following data occurs in pairs, one 
per surface): 

( 1,N) = side set id 
( 3,N) = pointer to side set element list 
( 5,N) = pointer to side set node list 
( 7,X) = pointer to data structures in 

KSLIST heap 
( 9,N) = number of faces 
(11 ,N> = number of nodes 
(13,N) = maximum face connections 
(15,N) = constrained node list vector 

Contact Surface Real Data Structure: 
(1,N) = partition balance factor 
(2,N) = static coefficient of friction 
(3,N) = high velocity coefficient of 

friction 
(4,N) = decay factor 

Contact Surface Data Heap; contains all 
data structures described in 
Section 6.2.2 for all contact surfaces. 
Contact Surface Scratch Heap; provides 
scratch storage for the contact 
algorithm. 

-_ 

B.6.2 Rigid Surface Arrays 

Name Dinlension Descript.ion 

KRIGID (Z,NRIGID) Rigid Surface Integer Data Structure: 

RIGID (9,NRIGID) 

(1 ,N) = side set id 
(2,N) = pointer to node list (first in 

NSN!lDE, then in KSLIST) 
(3,N) = number of nodes 

Rigid Surface Real Data Structure: 

(LN) = static coefficient of friction ‘, . 

3 :,. 

cv) = high velocity coefficient of '1 :; .: 
friction 

,' .*. _'. ;, I '.I *::.; $5: :..; x I : ," , \.,;: : .:.j 
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(3,N) = decay factor 
(4,N) = surface point vector 
(7,N) = surface outward unit normal 

vector 

B.7 Kinematic Constraint Gptions 

B.7.j No Displacement Array 

Name Dimer!sion Description 

KDISPL (4,NODISP) No Displacement Integer Data Structure: 
(1 ,N) = node set id 
(2,N) = pointer to node list 
(3,N) = component option: 

1 = x 
2 =Y 
3 = 2 

(4,N) = number of nodes 

B.S.2 Prescribed Velocity Arrays 

Yaanlc Dinlcnsion 

KPVELL (5,NVELBC) 

PVBC (8,NVELBC) 

Description 
Prescribed Velocity Integer Data 
Structure: 

(1 ,N) = node set id 
(2,N) = pointer to node list 

(3,N) = function id, changed to function 
number in TELALL 

(4,N) = component option: 
1 = x 
2 = Y 
3=2 
4= cylindrical 
5 = tangential 
6 = normal 
7= spherical 

(5,N) = number of nodes 
Prescribed Velocity Real Data Structure: 

(1 ,N) = scale factor 

(2 ,N) = origin vector 

(5,N) = velocity at last time step ; 
‘. 

“, 

/ 

. 

‘, J 

q 
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(6,N) = unit normal vector 

B.7.3 Prescribed Acceleration Arrays 

Name Dimension -- 
KPACCL (5,NACCBC) 

Description 
Prescribed Acceleration Integer Data 
Structure: 

(1 ,N) = node set id 

03) = pointer to node list 

(3,N) = function id, changed to function 
number in TELALL 

(4,N) = component option: 
1 =x 
2 =Y 
3 = 2 

(5J) = number of nodes 

PABC (NACCBC) kescribed Acceleration Scale Factor 

B.8 Load Options 

B.8.1 Prescribed Nodal Force Arrays 

Name Dinlension Description 

KFORCE (5,NFORCE) Prescribed Xodal Force Integer Data 

PFORCE (7,NFORCE) 

Structure: 
(1 ,N) = node set id 
(2,N) = pointer to node list 
(3,N) = function id, changed to function 

number in TELALL 
(4,N) = component option: 

1 =x 

2 Y = 

3=2 
4= cylindrical 
5 = tangential 
6 = normal 
7 = spherical 

(5,N) = number of nodes 
Prescribed Nodal Force Real Data 

Structure; 



(W’0 = origin vector 
(5,N) = unit normal vector 

B.8.2 Prescribed Pressure Arrays 

Name Dimension 
KPBC (4,NPRBC) 

PBcDAT (NPRBC) 

Description 
Prescribed Pressure Integer Data 
Structure: 

(1,N) = side set id 
(2,N) = pointer to side set node list 
(3,N) = function id, changed to function 

number in TELALL 
(4,N) = number of nodes 

Prescribed Pressure Scale Factor 

18.8.3 Moving Pressure Arrays 

Nane Dinlcnsion 
KMPBC (5,NMPBC) 

Description 
Moving Pressure Integer Data Structure: 

(1,N) = side set id 
(2,N) = pointer to side set node list 
(3,N) = number of sides 
(4,N) = first function id, changed to 

function number in TELALL 
(4,N) = second function id, changed to 

PMPBC (6,NMPBC) 

XMPBC (3,NSLIST) 

function number in TELALL 
Moving Pressure Real Data Structure: 

(1,N) = point vector 
(4,N) = scale factor 
(5,N) = arrival time 
(6,N) = propagation speed 

Moving Pressure Nodal Data Structure 
(allocated for all side side nodes for 
efficiency): 

(1,N) = linear coefficient 
(WJ) = exponential coefficient 

(3,N) = delay time 

:’ 

c 4” 

/ 

‘. 
.- 
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.,’ B.9 Initial Velocity Options 

B.9.1 Initial Node Set Velocity Arrays 

,.. 
(’ ’ 
‘, 

c ‘.! ‘_. r 

CJ / 
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:., 
,~ 

Name Dimension 

KVELFL (3,NIVFLG) 

vELI;L (N~PC,NI~FLG) 

Description 

Initial Velocity by Node Set Integer 
Data Structure: 

(1 ,N) = node set id 

(2 ,N) = pointer to node list 

(3,Nj = number of nodes 
Initial Velocity by Node Set Vector 

B.9.2 Initial Material Block Velocity Arrays 

N ame Dimension 
KvELM (NIVMAT) 
VELM (NSP~,NIVFLG) 

Description 
Initial Velocity by Material Block ID 
Initial Velocity by Material Block 
Vector 

B.9.3 Init.ial Angular Velocity Arrays 

N ame Dimension 

KANGV (NANGV) 
ANGVEL (6,NANGV 

Descript.ion 

Initial Angular Velocity Material ID 

> Initial Angular Velocity Real Data 
Structure: 

(1,N) = angular velocity vector 
(4,N) = origin vector 

B.10 Miscellaneous Options 

B.lO.1 User Function Arrays 

PRONTO supports user supplied functions for a number of options. These func- 
tions are stored as an arbitrary number of abscissa-ordinate pairs. PRONTO user 
functions are generally treated as piecewise linear and monotonicaily increasing. 

Name Dimension 

KFDAT (3,NFUNC) 

Description 

User Function Integer Data Structure: 

(1 ,N) = function id ) ,) 
(2,N) = number of data points ’ 7 . . i T 

1.‘. 

: 

j  ‘,’ 
?, i  ‘, 
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FUNCS (2,NTOTFV) 
(3,N) = pointer to the data points 

User Function Data Points 

B.10.2 Detonation Point Arrays 

Name Dirnension 

KDETPT (NDETPT) 
DETPT (4,NDETPT) 

Description 
Detonation Point Material ID 
Detonation Point Real Data Structure: 

(1 ,N) = detonation point vector 

(4,N) = detonation time 

B.10.3 Nonreflecting Boundary Array 

NCTIllC Dimension 
KQUIET (4,NQUIET) 

Description 
Nonreflecting Boundary Integer Data 
Structure: 

(1,N) = side set id 
!2 ,N) = pointer to side set element list 
(3,N) = pointer to side set node list 
(4,N) = number of sides 

B.lO.4 Adaptive Element Deletion Arrays 

Name Dimension Description 

KDEATH (4,NDEATH) Adaptive Element Deletion Integer Data 

DEATH (NDEATH) 

Structure: 
(1 ,N) = material id 
(2 ,N) = material type 

(3,N) = deletion variable: 
-5 = internal energy density 
-6 = vonMises stress 
-7 = pressure 
-8 = maximum principal stress 
+I = internal state variable I 

(4,N) = mode of deletion: 
1 = minimum 
2 = maximum 
3 = absolute value 

Adaptive Element Deletion Critical Value 
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B.ll Vector Block Arrays 

To promote vectorization, PRONTO often processes in vector bloclzs. Large blocks 

of data, such as material blocks, are subdivided into vector blocks of length NEBLK or 
less. All elements in a vector block are processed simultaneously. A number of scratch 

arrays are used in these vector block processing loops. For this purpose, PRONTO 
allocates the Vector Block Scratch Array, SCREL(NEBLK,128). Various routines then 

access sc.rat.ch storage by simply referencing a column of this array. 

Note that the Vector Block Scratch Array and the Contact Surface Scratch Heap 

are coresident. PRONTO allocates memory for the larger of their respective dimen- 

sions. 

B.12 Boundary Condition Sets 

The following arrays are read directly from the GENESIS file, which is described 

in Reference [2]. 

B.12.l Node Set Arrays 

Name Dimension 

KFLAG~ (NBcN0D) 
NPFLAG (NBCNOD) 
NFLoC (NBcNoD) 
IBC (NNLIST) 

VALNOD (NNLIST) 

Description 

Node Set ID 
Node Set Node List Length 
Node Set Node List Pointer 
Node Set Node List I?eap; contains all 

the node set lists. 
Node Set Node Factor Heap; contains a 
multiplication factor for each node set 
node. 

B.12.2 Side Set Arrays 

NSLEN (NBCSID) 

Name Dimension 

NVLEN (NBCSID) 

NSFLG (NBC~ID) 

NSPTR (NBCSID) 
NVPTR (NBCSID) 
NELEM~ (~sL1sT) 

Side Set Element List Length 

Description 

Side Set Node List Length 

Side Set ID 

Side Set Element List Pointer 
Side Set Node List Pointsr 
Side Set Node Element Heap; contains all 
the side set element lists. 



NsNom (NESNS,NSLIST) 

sv~LuE (NEsNS,NSLIST) 

Side Set Node List Heap; contains all 
the side set node lists. 
Side Set Node Factor Heap; contains a 
multiplication factor for each side set 
node. 

B.13 EXODUS Data Base 

PRONTO allows the user to seleci what variables will be written to the EXO- 

DUS [3] output. file. A default set of EXODUS output variables is defined, which 
may be overridden by user commands. The following arrays are allocated in the main 
rout.ine t.o set. up the data base. 

B.13.1 Nodal Variable Output Arrays 

Name Dimension Description 
NODWH 

LISTND (i3)*8 

(5) Nodal Variable Option Flags, a 1 
indicates the quantity is written: 

(1) = displacement (default=l) 
(2) = velocity (default=l) 

(3) = acceleration (default=l) 
(4) = lumped mass (default=O) 
(5) = reaction (default=O) 

Nodal Variable Option Names; contains 
the list of nodal variable names to be 
written on the EXODUS data base. The 
defaults are: 

(I> = DISPLX 
(2) = DISPLY 
(3) = DISPLZ 
(4) = VELX 
(5) = VELY 
(6) = VELZ 
(7) = ACCLX 

(8) = ACCLY 
(9) = ACCLZ 
(IO) = null 

iii) = null 
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B.13.2 Element Output Arrays 

Name Dimension Description 

NELWR (11) Element Variable Option Flags, a 1 

LISTEL (25) 

indicates the quantity is written: 
( 1) = stress (default =l> 
( 2) = energy (default=l) 

( 3) = hourglass (default=O) 
( 4 = strain (default=01 

( 5) = strech (default=O) 

( 6) = rotation (default=O) 

( 7) = ratedfm (default=O) 

( 8) = density (default=O) 
( 9) = pressure (default=01 
(10) = vonmises (default=01 
(11) = bulkq (default=O) 

Element Variable Option Names; contains 
the list of element variable names to be 
written on the EXODUS data base. The 
defaults are: 

( 1) = SIGXX 
( 2) = SIGYY 
( 3) = SIGZZ 
( 4) = TAUXY 
(5) = TAUYZ 
( 6) = TAUZX 
( 7) = ENERGY 
( 8) = null 
. . . 

(25) = null 

B.13.3 State Variable Output Arrays 

NaIne Dimension 
LISTS~ (MFIELD) 

MAPIE (NEMBLK,NWLST) 

Description 
State Variable Output Names; contains - 

the list of state variable names to be 
written on the EXODUS data base. There 
are no defaults. 
State Variable Option Map; a positive 
number indicates that a variable ail1 be 
written. 



Each internal state variable which the user specifies for the EXODUS data base 

is ent.ered int.o the LISTSV array. Subroutine SVLIST is called for each user specified 

name, for each material block t.o search for a state variable match. !f a mat.ch is found, 

the internal index of that variable is entered into the MAPIE array. If a particular 

mat.erial model does not have that internal state variable. a zero is entered into the 

map. This mapping is required because totally different material models may have the 

same internal st.ate variable (e.g., equivalent plastic strain), but in diflerent locations. 
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C. ADDING A NEW CONSTITUTIVE MODEL TO 
PRONTO 

( 
, -- 

’ -\ 
c ..I 

PRONTO was designed from t.he beginning to serve as a testbed for new consti- 

tutive models and algorithms. We have incorporated a material .interface subroutine 

which allows you (the constitutive model developer) to add a new material model with 

very little effort. We have purposely designed this interface so that you do not have 

to understand the inner workings of the finite element code, especially with respect to 

the allocation and management of computer memory. If the instructions in subroutine 

MATINT are followed correctly, the computer program will handle all memory alloca- 

tion, material data reading, and material data printing. There are three steps that you 

should follow to add a new model. 

STEP I 

Subroutine MATINT contains instructions via comment cards within the FORTRAN 

which outline the steps the you should follow to add your new material model. Most 

of the changes required involve adding or changing numbers in DATA or PARAMETER 
st.aten1ent.s. Since we have no foreknowledge of what the material constants represent 

for a particular material, we require that a few lines of FORTRAN be added which tell 

the code what the initial dilatational modulus (A $21~) is for the material. This value 

must be stored in the variable DATMOD in step 12. At the same place in the code, you 

can calculate any combinations of the input material constants that may be required in 

the constitutive subrout.ine. (e.g. bulk modulus from Young’s modulus and Poisson’s 

ratir;). 

You are restricted t.o twenty characters for your material name, material cues and 

internal state variable names which you define in subroutine MATINT. The names may 

have have multiple words, separated by blanks (i.e., YOUNGS MODULUS). You must define 

names such that each word is unique to the first three characters. This means that 

you may define material cues Cl, C2, C3, etc. but not CONI, CON2, CON3, etc. All words 

must be uppercase only since the free field reader is case insensitive. Finally, please do 

not usk special characters in your words as we cannot guarantee the results. 

, 

We reiterate that all of the steps which you must take when adding a new material 

model are outlined in detail via comments within the FORTRAN in subroutine MATINT. 

0 
.i 
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STEP II 

This step is optional; it. is only required if the new material model contains internal 

state variables which must be initialized to some value other than zero (we initialize all 

int.ernal stat.e variables to zero by default). If state variables must be initialized, you 

must add an ELSE IF block to subroutine SVINIT for this material. This block should 

read : 

ELSE IF( MKIND .EQ. # > THEN 

initialize your internal 

state variables here 

Your material number, 8, corresponds to the position where your material resides 

\vit.hin the list. of mat,erials defined in subroutine MATINT. Generally, a new material 

is added at. the end of the list; your material number would then be the same as the 

number of defined mai.erials in MATINT, which you must increment. in step I. This step 

should be obvious from looking at how other material models are coded in SVINIT. 
Please use comments for your mat.erial. 

STEP III 

You must add in subroutine UPDSTR t.he call t.o your mat,erial subroutine. You may 

call your material subrout.inc any name you wish, but we recommend our convention: 

MAT#, where # is your rnat.erial number as described above under STEP II. The call is 

included by adding an ELSE IF block to subroutine UPDSTR which should read: 

ELSE IF( MKIND .EQ. # > THEN 
CALL your subroutine( . . . . your argument list . . . . > 

This step should be obvious from looking at how other material models are coded 

in UPDSTR.Please use comments for your material so that years from now we havesome 

chance of figuring out. what was added to the code. 
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